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An equation to represent grain-size distribution

Murray D. Fredlund, D.G. Fredlund, and G. Ward Wilson

Abstract: The grain-size distribution is commonly used for soil classification; however, there is also potential to use
the grain-size distribution as a basis for estimating soil behaviour. For example, much emphasis has recently been
placed on the estimation of the soil-water characteristic curve. Many methods proposed in the literature use the grain-
size distribution as a starting point to estimate the soil-water characteristic curve. Two mathematical forms are pre-
sented to represent grain-size distribution curves, namely, a unimodal form and a bimodal form. The proposed equa-
tions provide methods for accurately representing uniform, well-graded soils, and gap-graded soils. The five-parameter
unimodal equation provides a closer fit than previous two-parameter, log-normal equations used to fit uniform and well-
graded soils. The unimodal equation also improves representation of the silt- and clay-sized portions of the grain-size

distribution curve.
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Résumé : La distribution granulométrique est utilisée couramment pour la classification des sols; cependant, il est pos-
sible d’utiliser également la distribution granulométrique comme base d’évaluation du comportement du sol. Par
exemple, beaucoup d’emphase a été mise récemment sur la détermination de la courbe caractéristique sol-eau. Plusieurs
méthodes proposées dans la littérature utilisent la distribution granulométrique comme point de départ pour établir la
courbe caractéristique sol-eau. Deux formes mathématiques sont présentées pour reproduire les courbes de distribution
granulométrige: nommément, une forme unimodale et une forme bimodale. Les équations proposées fournissent des
méthodes pour représenter avec précision des sols 4 granulométrie uniforme, étalée et discontinue. L’équation
unimodale & cing paramétres fournit une meilleure concordance que les équations antérieures log normales a deux
parameétres utilisées pour reproduire les courbes des sols a granulométrie uniforme et étalée. L’équation unimodale
améliore aussi la représentation des portions de silt et de grosseurs argileuses de la courbe de distribution

granulométrique.

Mots clés : distribution granulométrique, analyse par tamisage, analyse a I’hydrometre, classification des sols, fonction

de densité probabilistique.

[Traduit par la Rédaction]

Introduction

The grain-size distribution is a simple, yet informative test
routinely performed in soil mechanics to classify soils. Re-
cent research has made use of the grain-size distribution as a
basis for the estimation of other soil properties such as the
soil-water characteristic curve through mathematical analy-
sis (Gupta and Larson 1979a, 1979b; Arya and Paris 1981;
Haverkamp and Parlange 1986). Mathematically represent-
ing the grain-size distribution provides several benefits.
First, the soil may be classified using the best-fit parameters.
- Second, the mathematical equation can be used as the basis
 for analysis related to estimating the soil-water characteristic
- curve. Third, a mathematical equation can provide a method
of representing the entire curve between measured data
points, Representing the soil as a mathematical function also
provides increased flexibility in searching for similar soils in
databases.
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American Society for Testing and Materials standards
D1140-54 and D422-63 (ASTM 1964a, 1964k) provide a
basic testing and reporting method whereby the results of a
sieve and hydrometer analysis are plotted on a semilog-
arithmic graph. An interpretation method for the series of
plotted points is specified in the procedure. Manual interpre-
tation methods, such as sketching in a complete curve, have
often been used to provide a complete grain-size distribution
curve. Gardner (1956) proposed a two-parameter, log-normal
distribution to provide representation of grain-size distribu-
tion data. Both methods are feasible but have limitations that
are discussed later in the paper.

This paper proposes {wo new models to fit grain-size data,
namely, the use of a unimodal and a bimodal mathematical
function. The two new equations provide greater flexibility
for fitting a wide variety of soils.

Background

Numerous methods have been developed for particle-size
analysis in the laboratory and field. These include the
elutriation method, the test tube shaking method, the
Wiegner sedimentation cylinder, the photoelectric method,
the pipette method, and the hydrometer method, in addition
to the sieve analysis. Of these methods, only the pipette and
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Table 1. Equations that have been used to represent the soil-water characteristic curve.
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Authors Equation

Definition of variables

Gardner 1958 1
L+ agy™]

Wy =W + (W —w,g)[

Brooks and Corey 1964 -
Wy, =W, + (W — W) :;—

van Genuchten 1980;

Burdine 1953 1
Wy = Wy + (W — W)

N+ (ayw )"b][

van Genuchten 1980;
Mualem 1976 1

2 t] 3
'_I) meter; n, fitting parameter; V, soil suction §

w,, safitrated gravimetric water content; wy,
any gravimetric water content; wyg,
residual gravimetric water content; ag,
fitting parameter; n,, fitting parameter; Vf,
soil suction

a,, bubbling pressure (kPa); n, pore-size
index; w,, saturated gravimetric water
content; w,,, any gravimetric water content;
w,, residual volumetric water content; ¥,
soil suction (kPa)

w,, saturated gravimetric water content; w,
any gravimetric water content; W, residual
gravimetric water content; ay, fitting para-

w,, saturated gravimetric water content; w,,
any gravimetric water content; W, residual

Wy = Wy + (W — W )

van Genuchten 1980 1

Wy = Wy + (ws - erg)|:

Fredlund and Xing 1994

L+ (any )"'“](J

L+ (aygy )™ 1™

1

gravimetric water content; a, fitting para-
meter; n, fitting parameter; , soil suction

-]

|

w,, saturated gravimetric water content; w,,
any gravimetric water content; wy,, resid-
ual gravimetric water content; a,, fitting
parameter; n,,, fitting parameter; m,g,
fitting parameter; W, soil suction

] w,, saturated gravimetric water content; w,,
any gravimetric water content; g, fitting
parameter closely related to the air-entry
valee for the soil; ny, fitting parameter

In| exp(l) + [}‘—]

my

related to the maximum slope of the curve; |
my, fitting parameter related to the curvature |
of the slope; h,, parameter used to adjust |
lower portion of the curve; y, soil suction .

ag

hydrometer methods have found general acceptance for fine-
grained soils (Kohnke 1968).

ASTM (19644, 1964b) presents a standard for testing for
grain-size distribution. The interpretation of the grain-size
distribution is typically carried out manually. Further details
concerning the testing procedure and the interpolation of the
sieve and hydrometer tests are provided by Lambe (1951).

Gardner (1956) used a two-parameter, log-normal distri-
bution to fit grain-size distribution data. Kemper and Chepil
(1965) further studied the work of Gardner. The two-param-
eter fit of the grain-size distribution was performed using a
geometric mean parameter, x,, and a geometric standard de-
viation, G, The method of %tting log-normal equations to
the grain-size distribution was not recommended for general
use. However, the reason given for not using the log-normal
method was the lack of computing power necessary to fit the
equation to data. Hagen et al. (1987) presented a computer-
ized, iterative procedure that required only two sieves to de-
termine the parameters for a standard, two-parameter log-
normal distribution. Unfortunately, the log-normal distribu-

tion often failed to provide a close fit of the grain-size distc- }
bution at the extremes of the curve (Gardner 1956; Hagen ef
al. 1987). Wagner and Ding (1994) later improved upon the
log-normal equation by presenting three- and four-parame a.
log-normal equations. _

Campbell (1985) presented a classification diagram based;
on the assumption that the particle-size distribution is apH)
proximately log normal. This assumption led to the particley
size distribution being approximated with a Gaussian distri:
bution function. With this assumption, any combination 0
sand, silt, and clay can be represented by a geometric {of
logarithmic) mean particle diameter and a geometric stan
dard deviation. Values were summarized in a modified U.§,
Department of Agriculture (USDA) textural classificatiof
chart by Shirizi and Boersma (1984).

The first limitation associated with using a log-norms
type of equation is the assumption that the grain-size dist
bution is symmetric. In reality, the grain-size distribution
often nonsymmetric and can be better fit by a different
of equation. Second, a method for fitting soils that a
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bimodal or gap-graded is of value and the four-parameter
log-normal equations have not been found to be satisfactory
for fitting these types of grain-size distribution.

There are three general categories of grain-size distribu-
tions (Holtz and Kovacs 1981): well-graded soils, uniform
soils, and gap-graded soils. This paper focuses on these
three categories of grain-size distribution and provides equa-
tions to fit the experimental data for each category. The
well-graded and uniform soils are examined using a
unimodal method of fitting an equation, and then a mathe-
matical means of representing a gap-graded soil is presented.

Unimodal equation for grain-size
distribution data

The selection of an appropriate, mathematical equation in-
volved a review of a variety of equations that could be used
to fit soils data. It has been observed that the soil-water char-
acteristic curve possesses a shape similar to that of the
grain-size distribution curve. This is probably to be ex-
pected, since the soil-water characteristic curve provides a
representation of the void distribution in a soil, whereas the
grain-size curve provides information on the distribution of
the solid phase of the soil. Since the solids plus the voids
add up to the total soil volume, it is to be expected that the
distribution of the solids phase (i.e., grain-size distribution)
would tend to bear an inverse relationship to the distribution
of voids (i.e., represented by the soil-water characteristic
curve), and vice versa.

A summary of several of the equations that have been
used to fit the soil-water characteristic curve is given in Ta-
ble 1. Brooks and Corey (1964) and Gardner (1974) pre-
sented three-parameter equations and van Genuchten (1980)
and Fredlund and Xing (1994) presented four-parameter
equations. It would seem reasonable that a form of equation
similar to those shown in Table 1 could be used to represent
the grain-size distribution.

An accurate representation of the clay fraction of the
grain-size distribution was considered necessary to complete
the mathematical function. Since the Fredlund and Xing
(1994) equation allows independent control over the lower
end of the curve (i.e., the fine particle size range), it was se-
lected as the basis for the development of a grain-size distri-
bution equation. The reversed scale of the grain-size
distribution and characteristics unique to the grain-size dis-
tribution required the original Fredlund and Xing equation to
be modified to the form shown as follows;

[1] P(d) =
- 1n[1+ drgr]
1 d

1-
Mg
In (1 + i ]
dn
where

Pp(d) is the percentage, by mass, of particles passing a
particular size;

ﬂg

a
In|exp) +| =5~ |
p) (d)
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Fig. 1. Grain-size data fit with unimodal equation for a clayey
silt: (a) best-fit curve, R? = 0.998; (b) arithmetic probability den-
sity function; (¢} logarithmic probability density function {soil
number 10030Q),
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4, is a parameter designating the inflection point on the
curve and is related to the initial breaking point on the
curve;

ng is a parameter related to the steepest slope on the
curve (i.e., uniformity of the particle-size distribution);
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my is a parameter related to the shape of the curve as it
approaches the fines region;
dyy, is a parameter related to the amount of fines in a soil;

d is the diameter of any particle size under consideration;
and

dy, is the diameter of the minimum allowable size particle.

Equation [1] is referred to as a unimodal equation and can
be used to fit a wide variety of soils. A quasi-Newton fitting
algorithm was used to adjust three of the four parameters to
~ fit the equation to each soil. The algorithm progressively
minimizes the squared differences between the equation and
experimental data. The best-fit particle-size distribution
function can be plotted along with the grain-size distribution
data, typically on a logarithmic scale, as shown in Fig. la
for a clayey silt (soil number 10030).1

The unimodal equation provides significant improvements
in the fit of grain-size data over previous mathematical
representations (i.e., log-normal distribution). This is to be
expected due to the increase in the number of parameters
used to represent the grain-size distribution. The complexity
of the proposed unimodal equation due to the added parame-
ters is determined to be insignificant because of the avail-
ability of curve-fitting software.

The particle-size distribution provides information on the
amount and dominant sizes of particles present in a soil.
However, another form can also be used to represent the dis-
tribution of particle sizes by differentiating the particle-size
distribution curve. The differentiation produces a particle-
size probability density function (PDF). The differentiated
form of the unimodal grain-size equation is given in eq. [2],
and the parameters presented in the particle-size PDF are the
same as those defined for eq. [1]:

dP,

2 fl
2

e

+

Can. Geotech. J. Vol. 37, 2000

The particle-size distributions presented in this paper are
calculated using eq. [2] and are referred to as the arithmetic
probability density function. Figure 15 illustrates the arith-
metic probability density function for the clayey silt (soil
number 10030) shown in Fig. 1a.

The highest point in the PDF plot is the mode or the most
frequent particle size. Since eq. [2] is a PDF, the natural
laws of probability hold, such that the area under the differ-
entiated curve must equal unity:

i3] T(%] dr =1

—oe

Equation [2] can be arithmetically integrated between the
specified particle-diameter sizes. The probability that a soil
particle diameter will fall in a certain range is determined by
the following relationship:

x=d,
[4] probability (d,< d < d,) = j Hx)dx

x=d,

It is convenient to represent the PDF in a different manner
when plotted on a logarithmic scale. The arithmetic PDF
will often appear distorted when plotted on a logarithmic
scale. The peak computed from eq. [4] will not represent the
most frequent particle size. To overcome this limitation, the
PDF is often represented by taking the logarithm of the par-
ticle size and differentiating the grain-size equation to pro-
duce a PDF which appears more physically realistic as
presented in eq. [3]:

dP. dP.
5 = P =" Pinaod
[5] pi(d) dlog(@  dd n(10)

where p(d) is the logarithmic PDE

The peak of eq. [5] will represent the most frequent parti-
cle size. It must be noted that the probability of the logarith-
mic PDF must be calculated according to eq. [6]:

x=log (d,)

j pi(x)dx
x=log(d)

[6] probability (d;< d < d,) =

Figure lc shows the logarithmic PDF for the clayey silt
{soil number 10030),

The unimodal equation fit for a silty sand (soil number
63} and a sandy clay (soil number 11648) are shown in
Figs. 2a and 3q, respectively. Also shown are the arithmetic
probability density functions (i.e., Figs. 2b, 3b) and the loga-
rithmic probability density function for each of the above
soils (i.e., Figs. 2¢, 3¢).

The variation of R? (where R is the correlation coefficient)
versus percent clay is shown in Fig. 4. The value of R? was
plotted versus percent clay because the representation of
fines by the new equation was considered important.

! Soil numbers refer to soils found in the SoilVision database, which is a proprietary product of SeilVision Systems Ltd.
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Fig. 2. Grain-size data fit with unimodal equation for a silty
sand: (@) best-fit curve, R? = 0.985; (b) arithmetic probability
density function; (¢) logarithmic probability density function (soil
number 63).
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Parametric study of the proposed unimodal
grain-size distribution equation
A parametric study of the proposed unimodal equation

(i.e., eq. [1]) shows behaviour similar to that of the Fredlund
and Xing (1994) equation for the soil-water characteristic
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Fig. 3. Grain-size data fit with unimodal equation for a sandy
clay: (a) best-fit curve, R? = 0.999; (b) arithmetic probability
density function; (c) logarithmic probability density function
(soil number 11648).
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curve. The parameter a, is related to the initial break of the
equation and is more precisely the inflection point on the
curve. Its effect on the grain-size distribution curve can be
seen in Fig. 5a, where a; is varied from 0.1 to 10 while the
other equation parameters are held constant. The parameter
a,, provides an indication of the largest particle sizes.
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Figure 5b shows how the parameter n,, influences the slope
of the grain-size distribution. The point of maximum slope
along the grain-size distribution provides an indication of the
dominant particle size (i.e., on a logarithmic scale) in the
soil. In the parametric representation, n, is varied from 1 to 4.

The parameter m,, influences the break onto the finer par-
ticle size of the sample. The effect of varying the parame-
ter my, from 0.3 to 0.9 can be seen in Fig. 5c. The parameter
d,y affects the shape along the finer particle size portion of
the curve. However, the influence on the curve is quite mini-
mal as shown in Fig. 5d. In some cases d,,, can be modified
to improve the fit of the overall equation. With the best-fit
analysis shown, d,,, was adjusted manually to improve the fit
of the curve to the data. It was found that a value of 0.001
for drg provided a reasonable fit in most cases.

Bimodal equation for the grain-size
distribution curve

There is a limitation in using the unimodal equation (i.e.,
eq. [1}) when the soils are gap-graded as shown in Fig. 6. In
this case, it is necessary to consider the use of a bimodal
equation when performing the best-fit analysis. Soils fre-
quently have particle-size distributions that are not consis-
tent with a unimodal distribution and, as a result, attempts to
fit the unimodal equation to certain data sets can often lead
to a misrepresentation of the character of the particle-size
distribution. This is particularly important when the equation

Can. Geotech. J. vol. 37, 2000

Fig. 4. Variation of K? error as the amount of fines represented
in a soil increases.
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is differentiated and used for further analyses (e.g., estima-
tion of the soil-water characteristic curve).

The characteristic shape of a bimodal or gap-graded soil is
the double “hump” often observed from experimental data.
These humps indicate that the particle-size distribution is
concentrated around two separate particle sizes. From a
mathematical standpoint, a gap-graded soil can be viewed as
a combination of two or more separate soils (Durner 1994).
This allows for the “stacking” of more than one unimodal
equation:

Fig. 5. Parameter variation: (a} effect of varying the parameter ay while 1y, = 4.0, my, = 0.5, dpye = 1000, and dy, = 0.001; (&) effect of
varying the parameter ny, while ag, = 1.0, my, = 0.5, d,,, = 1000, and 4, = 0.001; (c) effect of varying the parameter my, while ag, =
1.0, ny = 4.0, dpye = 1000, and d,, = 0.001; (d) effect of varying the parameter d; while g = 1.0, ny = 4.0, my. = 0.5, and 4, = 0.001.
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71 Pyd=
[ r

S wr“M

g
a
1 hir:8
exp(l) +( 7 ]

where

d, is the residual particle diameter;

k is the number of “subsystems” for the total particle-size
distribution; and

w; are weighting factors for the subcurves, subject to ) <
w,~< 1 andZw,= 1.

For a bimodal curve, & would be equal to 2 and the num-
ber of parameters to be determined is 4k + (k — 1) (i.e., 9).
The unimodal equation is used as the basis for the prediction
of the bimodal equation. The final equation for a bimodal
curve is given as follows in its extended form:

1
8]  P,(d)={w ,,,H
ln[exp(l) + (ﬁ)m]
d
| L |
1
+(d-w) -1 ¢
Jbi ik
I 3 4
exp()+( ) )
.
1n[1+ﬁ)
d
X3l—|—L]| ¢
1n(1+drbi)
A

where

ay; is a parameter related to the initial breaking point
along the curve;

my; is a parameter related to the steepest slope along the
curve;

my,; is a parameter related to the shape of the curve;

Joi is a parameter related to the second breaking point of
the curve;

ky; is a parameter related to the second steep slope along
the curve;

Iy is a parameter related to the second shape along the
curve; and

dy is a parameter related to the amount of fines in a soil.
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Fig, 6. Example of fit of a gap-graded soil with the unimodal
equation (R”> = 0.977) and the bimodal equation (R% = 0.999)
(soil number 11491).
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A total of nine parameters must be computed when fitting -
the bimodal equation to data (i.e., stacking). Seven parame-
ters can be determined using a nonlinear least squares fitting
algorithm, and two parameters can be essentially fixed (i.e.,
dy; and dp).

Bimodal data sets can be closely fit using the bimodal
equation best-fit analysis. However, the best fit using a
unimodal equation provided only an adequate fit of the same
data sets. On the other hand, if the data sets are unimodal in
character, it is better to fit the data using the unimodal equa-
tion. The superposition method provides a robust method of
fitting bimodal data sets. The results of fitting the bimodal
curve to several different soils can be seen in Figs. 6-10.
The R? values for all bimodal fits was 0.999.

Figure 6 shows a comparison of a bimodal and unimodal
best fit of a data set. The unimodal R? value is 0.977 as op-
posed to 0.999 for the bimodal best fit. Comparable reduc-
tions in the R? value are shown for the soils in Figs. 8-10.

The bimodal silty sand shown in Fig. 7 (i.e., s0il number
11492) also illustrates the bimodal particle sizes on the
arithmetic and logarithmic probability density function. The
analysis shows that it is the logarithmic probability density
function that provides the most meaningful representation of
the dominant particle size. In this case the dominant particle
sizes are approximately 0.008 and 0.5 mm,

Application of the mathematical function
for the grain-size distribution

The grain-size distribution has been used primarily for the
classification of soils. The use of a mathematical equation to
fit the grain-size distribution provides several advantages for
geotechnical engineering. First, the unimodal and bimodal
equations proposed in this paper provide a method for esti-
mating a continuous function. Second, soils can be identified
on the basis of grain-size distribution by equations that are
best fit to the data. This information can be stored in a data-
base and used for identification purposes. Third, equations
provide a consistent method for determining physical indices
such as percent clay, percent sand, percent silt, and particle-
diameter variables such as dyy, dyg, dag, dsq, and dg,.
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Fig. 7. Example of fit of a gap-graded soil with the bimodal
equation for a clayey, silty sand: (a) best-fit curve, R? = 0.999;
(b) arithmetic probability density function; (¢) logarithmic proba-
bility density function (soil number 11492).
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The grain-size distribution has also been shown to be cen-
tral to several methods of estimating the soil-water charac-
teristic curve (Gupta and Larson 1979a, 19795, Arya and
Paris 1981; Haverkamp and Parlange 1986; Ranjitkar 1989).
An accurate representation of the soil particle sizes is essen-
tial when the grain-size distribution curve is used as the
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Fig. 8. Example of fit of a gap-graded clayey, silty sandy soil
with the unimodal eguation (R? = 0.984) and the bimodal equa-
tion (R? = 0.999) (soil number 11492),
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Fig. 9. Example of fit of a gap-graded soil with the unimodal
equation (R? = 0.992) and the bimodal equation (R? = 0.999)
{soil number 11493).
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Fig. 10. Example of fit of a gap-graded soil with the unimodal
equation {R? = 0.987) and the bimodal equation (R? = (0.999)
(soil number 11498). ‘
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Fig. 11. Unimodal parameter variation: (@) frequency distribution
of the natural logarithm of the parameter aqp (b) frequency dis-
tribution of the parameter n,,; (¢) frequency distribution of the
parameter mg,
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basis for the estimation of the soil-water characteristic
curve. The equations presented in this paper appear to pro-
vide an excellent basis for the estimation of the soil-water
characteristic curve (Fredlund et al. 1997).

825

Fig. 12. Determination of the soil fractions (i.e., percent clay,
silt, and sand), according to the USDA classification, when using
the unimodal equation.

100 »

—
s

Silt

=)
=]

Coarse

[
o

Sand

-y
(=]

Percent passing (%)

—

[~
=

S Clay
0 i I
0.0000% 0.0001 0.001 0.01 0.1 1 10 100

Particle size (mm)

Parameters of the grain-size distribution
equations

The unimodal fit of the grain-size distribution has been fit
to over 600 experimentally measured grain-size data sets
contained in the SoilVision® database. The unimodal fit per-
formed well with the exception of soils exhibiting bimodal
behaviour. The parameters of the unimodal equation appear
to vary in a manner similar to that of the parameters in the
Fredlund and Xing (1994) soil-water characteristic curve
equation,

Histograms showing the frequency distribution of"
unimodal equation parameters are shown in Fig. 11. The fre-
quency distributions provide an indication of the mode and
range of each of the three main parameters for the soils con-
tained in the database. For example, the most frequent gy
and my, values were approximately 3 and 1, respectively.

One aspect of this study was to determine whether the
equation parameters could be grouped according to soil tex-
tural classifications. For example, is there a range of the pa-
rameter n, typical for silty sands? The results of this
research indicate that general parameter groups can be iden-
tified but specific parameter groupings cannot be identified.
The influence of equation parameters on each other does not
allow for specific groupings. For example the parameter n,,
influences the parameter my, and vice versa. It was found
that grouping soils was more successful when parameters
with physical significance were selected. The groupings of
soil properties was better achieved by grouping soils accord-
ing to physical parameters such as percent clay, percent silt,
and percent sand, or using variables such as dg, dy, dag, dsg,
and dﬁﬁ’

Determining physical parameters from the
grain-size distribution equation

One of the benefits of the two grain-size equations pre-
sented in this paper is that meaningful, physical variables
can be computed from the curves. The most commonly used
variables are percent clay, percent sand, percent silt, and di-
ameter variables such as dyg, dyg, dag, dsp, and dg;,. The equa-
tions are in the form of percent passing a particular particle
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Fig. 13, Determination of the percent passing for any particle
size, d, for a unimodal grain-size distribution.
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size, Py(d), where d is the particle diameter (mm). The per-
cent clay, percent silt, and percent sand can therefore be
read directly from the curve by substituting in the appropri-
ate diameters. The diameters used depend upon the criteria
associated with the various classification methods. For ex-
ample, the USDA classification boundaries are 0.002, 0.05,
and 2.0 mm for percent clay, percent silt, and percent sand,
respectively. The Unified Soil Classification System (USCS)
classification nses boundaries of 0,005, 0.075, and 4.75 mm
for percent clay, percent silt, and percent sand, respectively.
The divisions can be determined for any classification
method by substituting the appropriate particle size into the
equations, as shown in Fig. 12,

The diameter variables must be read off the curve in an in-
verse manner. The particle-size diameter answers to the
question “what particle diameter has 10% of the total mass
smaller than this size?” Taking the inverse of either the
unimodal or bimodal equation is difficult. A “half-length”
algorithm was therefore used to read diameters from the
grain-size curve. An initial estimation diameter was selected
and the correction distance was progressively halved until
the iteration process yielded a minimal error. The results of
this process are shown in Fig. 13.

Application to the estimation of the soil-
water characteristic curve

Several current methods for the estimation of the soil-
water characteristic curve make use of the grain-size distri-
bution as the basis for the prediction (Arya and Paris 1981;
Haverkamp and Parlange 1986). The soil-water characteris-
tic curve has been found to be sensitive to the derivative of
the grain-size distribution (Fredlund et al. 1997). Methods of
estimating the soil-water characteristic curve have been
somewhat limited by the lack of a continuous grain-size dis-
tribution function. Current models often require grain-size
information to be estimated from the grain-size curve.

The grain-size distribution is theoretically a continuous
curve representing the amount of various particle sizes pres-
ent in soil. The soil-water characteristic curve is primarily a
representation of the pore sizes present in the soil. A method
for translating the particle-size distribution into a pore-size
distribution is central to most methods of estimating the soil-
water characteristic curve. An analysis of the soil can be
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performed by differentiating the grain-size equation as
shown by eq. [2]. The differentiated equation will produce a
particle-size probability density function that can be used as
the basis for further analysis. The particle-size distributions
calculated according to eq. [1] can vary over several orders
of magnitude.

Conclusions

Fitting of the grain-size distribution has historically been
a manual process or has involved the use of log-normal dis-
tributions of one, two, or three parameters. Unimodal and bi-
modal equations are presented in this paper to fit essentially
any grain-size distribution data set. The unimodal equation
was found to provide a good fit for a variety of soils. The
extremes of the grain-size distribution were also well fit by
the equation.

Gap-graded soils can be best fit using a bimodal equation.
The bimodal equation allows for a mathematical representa-
tion of any grain-size distribution where the sample contains
two distinctly different, but dominant particle-size groups.

Mathematical representation of the grain-size distribution
provides numerous benefits. First, the grain-size curves can
be identified and categorized. Likewise, the grain-size curves
can be located in a database using searching techniques.
Grain-size variables (i.e., percent clay, dyg, dg, etc.) can be
mathematically determined from the equation. The unimodal
and bimodal equations provide a method for fitting the three
major soil categories of well-graded soils, uniform soils, and
gap-graded soils.

The proposed continuous mathematical function for the
grain-size curve sets the stage for further analysis to esti-
mate the soil-water characteristic curve of a soil.
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