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ABSTRACT: A practical three-dimensional slope stability approach is presented. 
Simple finite element stress and seepage analyses are employed in order to computer 
factors of safety. Benchmark problems are presented in order to verify the accuracy of 
the proposed method. Close agreement is observed when comparing the results 
obtained herein and those from the literature.  
 
INTRODUCTION 
 
   Most slope stability problems are three-dimensional in nature. Few are the situation 
where a two-dimensional plane strain condition truly represents the field condition. 
Several field conditions can be better represented by three-dimensional models, such 
as excavation fronts, slope corners, dam shoulders, to name only a few geotechnical 
problems. Numerous advances in three-dimensional geotechnical analysis have been 
achieved in the last few decades, mostly due to the increase in computational power. 
   This paper presents how three-dimensional slope stability analyses can be 
undertaken using simple finite element stress and seepage analysis. Two benchmark 
problems are presented in order to demonstrate the accuracy of the method of analysis. 
 
LITERATURE REVIEW 
 
   The methods of three-dimensional analysis of slopes are usually extensions of 
conventional two-dimensional approaches. Variational calculus, for instance, has been 
extended to three-dimensional conditions by Leshchinsky et al. (1985) and 
Leshchinsky and Baker (1986). Leshchinsky and Huang (1992) further extended their 
original work, but the method was limited to problems with symmetric geometry.  
   Michalowski (1989) presented a three-dimensional solution based on the upper-
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bound theorem. The solution was limited to homogeneous slopes. More recently, 
Farzaneh and Askari (2003) have extended the work by Michalowski (1989) to non 
homogeneous slopes. Chen et al (2001a, 2001b) have also presented an upper-bound 
solution for three-dimensional slope stability.  
   Lam and Fredlund (1993) have presented an extension of the GLE limit equilibrium 
method to three-dimensional conditions. The method is particularly interesting 
considering that the limit equilibrium is widely accepted in geotechnical engineering 
practice.  
   Other modeling approaches have been presented by numerous researchers in the last 
few years. The upper and lower-bound theorems have been applied along with the 
finite element method, in order to produce stress and strain fields (Lyamin and Sloan, 
2002a and 2002b). 
   From the point of view of practicing geotechnical engineers, it becomes difficult to 
determine what three-dimensional method of slope stability analysis is the more 
adequate. A sound theoretical basis, a generalized approach that is capable of handling 
field conditions, and simplicity, are some of the requirements of a handy slope 
stability method. It appears that if a practical three-dimensional finite element tool for 
stress and seepage analysis is available, it becomes convenient to extend the two-
dimensional enhanced method to three-dimensional conditions. Such method could be 
considered a practical tool for routine analyses. 
 
THEORY 
 
   The factor of safety is usually defined as the ratio by which the shear strength must 
be reduced in order to bring the soil mass to a state of limit equilibrium. For a three-
dimensional slip surface, the factor of safety may be computed by taking the total 
resisting shear force divided by the total shear force: 
 
 ∫∫ ττ==

A aA fs dAdASRF  (1) 

 
where: R is the total resisting shear force; S is the total shear force; τf is the shear 
strength; τa is the shear stress; and A is the slip surface area.  
   The resisting and shearing stresses acting along a three dimensional slip surface 
must be determined. The state of stress and pore-water pressure at any point in the soil 
volume may be determined using the finite element method. Therefore, the method 
presented herein is an extension of the enhanced method to three-dimensional 
conditions. The computation of the factor of safety can be summarized as follows: 
 

a) The distribution of stresses and pore-water pressures are determined using the 
finite element method. Appropriate boundary conditions, constitutive models, 
and constitutive parameters must be adopted;  

b) The normal and shear stresses are computed for a grid of points located at the 
base of the slip surface. The normal stress depends on the position along the 
slip surface. The shear stress depends not only on the position at the slip 
surface but also on the direction of slippage projected on the horizontal plane; 
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c) Integration of the acting and resisting stresses is performed along the slip 
surface area. 

 
   Spherical and ellipsoidal slip surface shapes have been implemented and tested 
herein. The shape and position of a spherical slip surface are defined as follows: 
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where: x0s, y0s, and z0s are the coordinates of the center of the sphere in the x, y, and z 
directions; and rs is the radius of the slip surface. Only the bottom half of the sphere is 
taken by using the minus sign for the square root. 
   The shape and position of an ellipsoidal slip surface can be defined as follows: 
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where: x0e, y0e, and z0e are the coordinates of the center of the ellipsoid; a, b, and c are 
the lengths of the semi-axes in the x, y, and z directions; and θ gives the orientation of 
the ellipsoid in the x-y plane, θ being 0 in the x-direction and increasing counter-
clockwise.  
   The direction of a plane tangent to any point of the slip surface is defined by the 
angles its normal makes with x, y, and z. Such direction can be expressed in terms of 
the direction cosines: 
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where: f denotes the equation defining the geometric location of the slip surface (Eqs. 
2 or 3) and 222 )()()( zfyfxff ∂∂+∂∂+∂∂= . The first index “1” indicates the 
direction defined by the normal to the surface. The second indexes indicate the x, y, 
and z directions 
   For a spherical slip surface, the derivatives are as follows: 
 
 )(2 0sxxxf −=∂∂ ; )(2 0syyyf −=∂∂ ; )(2 0szzzf −=∂∂  (5) 
 
   For an ellipsoidal slip surface, the derivatives are as follows: 
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   The normal stress acting in a plane tangent to any point of the slip surface is given 
by the following equation: 
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   Given the computed σn, the shear strength can be calculated using the Mohr-
Coulomb criterion for saturated/unsaturated soils: 
 
  (10) b

waanf uuuc φ−+φ−σ+=τ tan)('tan)('
 
where: c’ is the effective cohesion; ua is the pore-air pressure; φ’ the angle of internal 
friction; uw is the pore-water pressure; and φb is the angle of friction with respect to 
changes in matric suction. Equation 10 reduces to the conventional Mohr-Coulomb 
criterion when the soil becomes saturated. 
   In order to compute the acting shear stress, the direction of slippage movement must 
be known. The direction of the slippage movement may be determined as part of the 
optimization technique used in the determination of the critical slip surface. The 
slippage direction may also be adopted. For instance, the slippage movement could be 
assumed to be given by the average slope face direction.  
   The projection of slippage direction in the horizontal plane is given by a unit vector 
with components in the x and y direction, b1 and b2. The third component, b3, indicates 
the direction normal to the slip surface and is orthogonal to b1 and b2: 
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   The direction cosines that indicate the slippage direction are as follows: 
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   Finally, the shear stress acting at any point and slippage direction at the base of the 
slip surface is given by the stress state and direction cosines, defined by Eqs. 4 and 12: 
 

 ( ) ( ) ( 321112312231322112212211

323122211211

aaaaaaaaaaaa

aaaaaa

zxyzxy

zyxa

+τ++τ++τ+ )
σ+σ+σ=τ

 (13) 

 
   Finite Element models usually employ procedures based on stresses that are 
computed at the integration points. Therefore, in order to compute the normal and 
shear stress at any point at the base of a given slip surface, the state of stress 
determined at the integration points must be used. If necessary, these stresses can be 
extrapolated to the nodes using simple mapping techniques. 
   The procedure presented above must be employed for each trial slip surface 
established during the optimization analysis. Several optimization techniques are 
available for the determination of the critical slip surface. This paper will not deal with 
these procedures. Instead, the computation of the factor of safety of three-dimensional 
slip surfaces with known shape and position is presented. 
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ANALYSIS OF BENCHMARK PROBLEMS 
 
   There are few numerical modeling tools available that are capable of performing 
three-dimensional analysis. Most of the available tools are not practical and efficient 
enough for routine use. The analyses presented herein were performed using the 
software SVOffice 2006 (SoilVision Systems Ltd., 2007). The formulation presented 
above was programmed using FlexPDE (PDE Solution Inc., 2007), a general purpose 
partial differential equation solver. For the benchmark analyses presented herein, 
problem setup time was less than 15 minutes. The computation work usually took less 
than 5 minutes on a Core 2 Duo processor running at 2 GHz, with 1 Gb or RAM. 
   Two benchmark problems have been selected for the verification of the three-
dimensional slope stability analysis solution. The first problem corresponds to a 
simple and symmetric cohesive slope. The second problem corresponds to an 
asymmetric slope with friction and cohesion. Both problems have been frequently 
presented in the research literature for benchmark purposes. 
 
Symmetric Cohesive Slope 
 
   Figure 1a presents the first benchmark problem. A spherical slip surface is 
employed. The simple geometry, boundary conditions and soil properties allowed for 
the development of analytical solutions. Baligh and Azzouz (1975) and Gens et al. 
(1988) present two different solutions. Hungr et al. (1989), Lam and Fredlund (1993) 
and Chen et al. (2001) have also analyzed this problem.  
   The parameters adopted herein for the stress analysis where as follows: a Young 
Modulus of 3500 kPa; Poisson’s ratio that varied from 0.1 to 0.49; total cohesion of 
0.1 kPa, friction angle equal to zero; pore-water pressure equal to zero; and unit 
weight of 1 kN/m3.  
   Figure 1b presents the distribution of vertical stresses throughout the slope and at the 
base of the slip surface. The simple geometry and absence of external loads results in 
smooth contours for the distribution of stresses. 
   Table 1 presents the results of the analysis along with the factors of safety obtained 
by other researchers using different methods of analysis. It can observed that similar 
results where obtained when comparing the numbers provided by all authors. The 
factor of safety obtained previously ranges from 1.386 to 1.422. The GLE method 
(Lam and Fredlund, 1993) provided a factor of safety of 1.402 when using a relatively 
small number of columns, 540. The three-dimensional enhance method used herein 
provides factors of safety near 1.4. However, the results depend on the value of 
Poisson’s ratio. Values of factor of safety as high as 1.438 were obtained when 
increasing Poisson’s ratio near its maximum theoretical value of 0.5. 
   A variation of 0.05 in the factor of safety was obtained when subjecting the analysis 
to extreme variations in the number of nodes. The number of nodes was varied from 
approximately 5,000 to up to 300,000. The size of the problem domain could also 
affect the results if the boundaries are too close to the slip surface. Increasing of the 
problem size did not result in significant changes in the factor of safety (less than 2% 
of variation). Therefore, the original domain size, presented in Fig. 1, was deemed 
adequate. 
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(a)       (b) 

FIG. 1. Benchmark problem 1 - homogeneous cohesive slope with spherical slip 
surface: (a) geometry and boundary conditions; and (b) vertical stresses. 
 

 
Table 1. Benchmark problem 1: factors of safety obtained by other research and 
obtained in this study. 
 

Reference Method of analysis Fs 3-D 
Baligh and Azzouz (1975) Analytical solution 1.402 
Gens et. al. (1988) Analytical solution 1.402 
Hungr et. al. (1989) Method of slices (Bishop’s simplified) 1.422 
Lam and Fredlund (1993), 540 columns Method of slices (GLE) 1.402 
Lam and Fredlund (1993), 1200 columns Method of slices (GLE) 1.386 
Chen et, al. (2001) Upper bound theorem 1.422 
This study Poisson’s ratio = 0.1 1.396 
 Poisson’s ratio = 0.2 1.401 
 Poisson’s ratio = 0.3 1.409 
 Poisson’s ratio = 0.4 1.422 
 Poisson’s ratio = 0.49 1.438 

 
Non-symmetrical slope with friction and cohesion 
 
   Leshchinsky et al. (1985) have proposed an analytical solution for three-dimensional 
slope stability problems using the logarithmic spiral. One of the examples presented 
by Leshchinsky et al. (1985) is re-analyzed herein, using a spherical slip surface 
approximation. The same problem was also analyzed by Hungr et al. (1989) and 
Stianson (2006), using different approaches.  
   The parameters adopted herein for the stress analysis where as follows: a Young 
Modulus of 3500 kPa; Poisson’s ratio that varied from 0.1 to 0.49. The shear strength 
and body load parameters of the problem presented by Leshchinsky et al. (1985) are as 
follows: total cohesion of 0.116 kPa; friction angle of 15o; pore-water pressure equal 
to zero; and unit weight of 1 kN/m3.  
   Even though Leshchinsky et al. (1985) have used logarithmic spirals, a spherical 
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shape approximates the shape of the original slip surface fairly well. Figure 2a 
presents the slip surface adopted herein. The radius and center were adjusted in order 
to match the original slip surfaces. Subtle differences in the position of the slip 
surfaces adopted by Hungr et al. (1989) and Stianson (2006) were matched. 
   Figure 2b presents the distribution of vertical stresses throughout the slope. Once 
again, the simple geometry and absence of external loads results in smooth contours 
for the distribution of stresses. 
   Table 2 presents the results obtained by the three previous researchers and those 
obtained in this study. The differences in factor of safety among the three previous 
researchers are due to differences in the method of analysis and, more importantly, 
differences in the position of the slip surfaces obtained. The factors of safety appear to 
be reasonably close when comparing those obtained by each author and the results 
presented herein. Poisson’s ratio appears to have an effect on the factor of safety. 
Higher Poisson’s ratios result in higher factors of safety. 
 
CONCLUSIONS 
 
   A practical three-dimensional slope stability approach was presented, using simple 
finite element stress and seepage analyses. Benchmark problems were presented in 
order to verify the accuracy of the proposed method.  Close agreement was observed 
when comparing the results obtained herein and those from in the literature. Higher 
values of Poisson’s ratio resulted in higher values of factor of safety. 

 
(a)       (b) 

FIG. 2. Benchmark problem 2: (a) geometry and slip surface shape matching that 
of Leshchinsky et al. (1985); and (b) distribution of vertical stresses. 

 
 
Table 2. Benchmark problem 2: factors of safety obtained by other research and 
obtained in this study. 
 

This study, Fs 3-D Reference Fs 3-D 
μ = 0.1 μ = 0.2 μ = 0.3 μ = 0.4 μ = 0.49

Leshchinsky et al. (1985) 1.250 1.209 1.221 1.234 1.246 1,258 
Hungr et al. (1989) 1.230 1.239 1.247 1.256 1.265 1,277 
Stianson (2006) 1.410 1.354 1.368 1.382 1.395 1,408 
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