The Evaluation of Evaporative Fluxes from Soil Surfaces for Problems in Geotechnical Engineering

G. WARD WILSON
Assistant Professor, Department of Civil Engineering
University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0

DELWYN G. FREDLUND
Professor and Head, Department of Civil Engineering
University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0

S. LEE. BARBOUR
Associate Professor, Department of Civil Engineering
University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W0

ABSTRACT

Evaluation of the flow of water across the soil-atmosphere boundary is an essential component in the analysis of many problems in geotechnical engineering. For example, the design of soil covers systems as oxygen barriers for the long-term containment of sulfide mineral tailings requires accurate prediction of moisture fluxes between the cover surface and the atmosphere. The flow of water across the ground surface is also important for problems in classical soil mechanics. These include the analysis of pore-water pressures for slope stability analysis and the prediction of volume change in expansive soils.

The flow of water across the soil-atmosphere boundary occurs as two separate processes. Liquid water due to precipitation enters the soil below the ground surface through the process of infiltration. Alternately, water vapour leaves the ground surface through the process of evaporation. The physics of liquid flow during infiltration has been widely discussed in the literature and many suitable methods of analysis are available. However, the physical processes which govern evaporation from soil surfaces are poorly understood. Extreme difficulties are encountered when attempting to predict evaporation from unsaturated soil surfaces.

The traditional methods of evaluating evaporation from a theoretical basis provide only an estimate of potential evaporation. These methods assume the evaporating surface is fully saturated. This approach is appropriate for predicting evaporation rates from ponds and water reservoirs. However, actual rates of evaporation from unsaturated soil surfaces are often much less than the potential rate of evaporation. A mechanistic approach for predicting evaporation from unsaturated surfaces suitable for applications in geotechnical engineering is not available in the literature. Several empirical methods for estimating evaporation from unsaturated soil surfaces are available; however, the reliability and accuracy of these methods are questionable.

This paper presents a theoretical model for predicting the rate of evaporation from unsaturated soil surfaces. The theory is founded on the well-known principles of Darcy's Law and Fick's Law to describe the flow of liquid water and water vapour in the soil below the soil-atmosphere boundary. Dalton's Law and a modified Penman formulation are used to describe water vapour transfer above the soil-atmosphere boundary.

A column evaporation test was carried out in the laboratory. The laboratory test results show that evaporative fluxes from a soil surface are controlled by the soil suction at and below the soil-atmosphere boundary. Furthermore, soil evaporative fluxes are also strongly dependent on ground water conditions and the flow properties of the soil.

The theoretical model for soil evaporation was used to simulate the evaporative fluxes measured from the soil columns during the laboratory evaporation test. The theoretical model provided good agreement with the evaporative fluxes measured in the laboratory over the 6-week period of the test.

INTRODUCTION

The exchange of water between the atmosphere and ground surface is an important component of the hydrologic cycle. Water enters and leaves the ground surface through the processes of infiltration and evaporation (and evapotranspiration). Predicting the actual rate of the flow of water across the soil-atmosphere boundary is an important issue for many problems. Hydrologists and agricultural scientists have great historical interest in this subject. However, geotechnical engineers are increasingly required to address flux boundary problems for many analytical and practical problems.

The evaluation of the flux boundary condition with respect to moisture flow across the soil-atmosphere boundary is paramount for numerous problems in geotechnical engineering. These problems may be classified into two general groups; namely, groundwater analyses and soil behavior analysis.

Problems in groundwater analysis occur at both a regional and local level. For example, the recharge of groundwater to a large aquifer depends on the net flow of water across the soil-atmosphere boundary at a regional scale (Freeze and Cherry, 1979). Alternately, the local flow of water through the soil cover at a hazardous waste site controls the rate at which water flows through the waste fill and contaminates the local groundwater system (Itzcoy, 1989). The performance of soil covers with respect to soil-atmosphere moisture flow is also important when the cover is designed as an oxygen barrier for long-term closure of sulfite mine tailings (Collins and Rasmussen, 1990).

The flow of water across the ground surface is also of importance for many problems in soil behavior and classical soil mechanics. Expansive soils occur in many areas in Canada and the United States. Shallow foundations and pavement structures frequently experience extensive heave and/or settlement depending on changes in climatic conditions (Sattler and Fredlund, 1991; Silvestri et al., 1990). The stability of natural and man-made slopes depends on pore-water
pressures along the slip surface. Ng (1988) showed the factor of safety of a potential slip surface to be strongly dependent on the flux boundary condition with respect to water flow across the surface of the slope. In summary, an accurate prediction of the flow of water across the soil-atmosphere boundary is essential for many problems in geotechnical engineering.

The exchange of moisture across the soil-atmosphere boundary occurs through two primary processes. Water enters the ground surface primarily as liquid through the process of infiltration. Alternately, water exfiltrates from ground surface as vapor through the processes of evaporation and evapotranspiration. The mechanics of flow governing infiltration are reasonably well understood and widely discussed in the literature (Horton, 1953; Philip and de Vries, 1937; Freeze 1969; Freeze and Banner, 1970; Duttin, 1976; Eagleson, 1978; and Milly (1986). In contrast, the processes which control exfiltration are more poorly understood. The ability of engineers to predict evapotranspiration from a free water or saturated surface such as a lake or irrigated field is in most cases quite satisfactory. However, extreme difficulties are encountered for unsaturated soil surfaces. This has led to a series of these problems in the analysis of many problems in agricultural engineering. For example, in areas such as western Canada, fully saturated conditions occur only for a brief period of time following precipitation events. The flux boundary condition at the ground surface is generally dominated by evaporation from an unsaturated soil surface. Conventional methods of predicting evapotranspiration from saturated surfaces are not suitable for unsaturated surfaces and often provide extreme over-estimates of actual evaporation.

POTENTIAL AND ACTUAL EVAPORATION

The widely used terms "Potential Evaporation" and "Potential Evapotranspiration" have been in use by hydrologists and engineers for more than 40 years (Thornthwaite, 1948; Penman, 1948). The International Glossary of Hydrology WMO (1974) defines potential evaporation as: "The quantity of water vapor which could be emitted by a surface of pure water per unit surface area and unit time under the existing atmospheric conditions". In simple terms, potential evaporation determines the upper limit or the maximum possible rate of evaporation.

The actual rate of evaporation from a soil surface depends on the availability of water (Thornthwaite, 1948; Penman, 1948; Holmes, 1961; Boutech, 1963; Priestly and Taylor, 1972; Pruittgart, 1982; and Morton, 1985). The maximum potential rate occurs only when the soil surface is fully saturated and water is present on the ground surface. The actual rate of evaporation begins to decline once the soil surface becomes unsaturated. The rate of evaporation continues to decline as the soil surface continues to desiccate. Hillel (1980) showed typical curves for evaporation rates versus drying time for soil (Figure 1). The different initial upper limits for each curve represent the maximum potential rates under various climatic conditions. For example, curve No. 2 is the measured evaporation rate from an initially saturated ground surface in a hot arid climate. Curve No. 4 is the measured rate of evaporation from an identical soil surface in a cool, moist climate. All curves show the actual rate of evaporation suddenly drops below the upper potential rate after some period of drying. These breaks in the evaporation rates indicate the transition of the soil surfaces from saturated to unsaturated conditions.

METHODS OF PREDICTING EVAPORATION

The potential rate of evaporation as described above may be computed using the simple mass transfer equation (Gray, 1970) as follows:

\[E = f(a) (P_{sv} - P_a) \]

where:

- \(E \) = vertical evaporative flux in mm/day.
- \(f(a) \) = a function dependent on wind speed, surface roughness and eddy diffusion.
- \(P_{sv} \) = vapor pressure of the saturated evaporating surface.
- \(P_a \) = the vapor pressure in the air above the evaporating surface.

This simple mass transfer approach is widely accepted and has deep historical roots which extend back to Dalton during the nineteenth century (Gray, 1970; Rosenberg et al., 1983). In general terms, the evaporative flux is a function of the vapor pressure gradient between the saturated surface and the overlying air. The vapor pressure at the surface is known if the surface is saturated and its temperature is known. The vapor pressure in the air is determined on the basis of air temperature and relative humidity. The function, \(f(u) \), may be evaluated on the basis of turbulent mixing theory or by using empirical relationships. The mass transfer approach has been applied to free-water surfaces, bare soil and vegetated surfaces (Conaway and van Bavel, 1967; Brutsaert, 1982; and Rosenberg, et al., 1983).

Numerous other methods of evaluating evaporation may be found in the literature. Some of the most common methods are:

1. The Thornthwaite Method
2. The Penman Method
3. The Priestley-Taylor Model
4. The Complimentary Relationship

Thornthwaite (1948) proposed a method of estimating potential evapotranspiration as a guide for the classification of regional climates. The method is empirical and is based on mean monthly air temperatures. The method has received considerable usage over the years simply because it does not require detailed and sophisticated data. In general, the Thornthwaite method has proven satisfactory for some applications (Sattler, 1989).

Penman (1948) developed a method of calculating potential evaporation through the simultaneous combination of the mass transfer equation with the energy budget at the ground surface. The equation presented by Penman (1948) is written as follows:

\[E = \frac{Q + v E_a}{\Gamma + v} \]

where:

- \(E \) = potential evaporation per unit time, in mm/day.
- \(E_a \) = \(f(a) (P_{sv} - P_a) \).

![Figure 1](after Hillel, 1980)

Figure 1 Typical Curves for Evaporation Versus Time for Soil.
The Penman Method of calculating potential evaporation has become the most popular and widely adopted combination approach (Rosenberg et al., 1983). The Penman method requires only routine weather parameters such as relative humidity, air temperature and wind velocity. The energy budget may be estimated on the basis of solar radiation charts and empirical formula. The Penman formulation is most correctly applied to open water surfaces. Penman (1948), however, extended the method to include ground surfaces such as bare soil and turf (grass).

Priestley and Taylor (1972) provided a method of calculating potential evapotranspiration on the basis of the combined latent and sensible heat fluxes. In other words, potential evapotranspiration is evaluated solely on the basis of available energy. The Priestley and Taylor's (1972) formula is written as follows:

\[
\text{ET}_p = \alpha \frac{\Gamma}{\Gamma + v} (Q_e + Q_g) = \alpha \frac{\Gamma}{\Gamma + v} (Q_h + Q_g)
\]

where:
- \(\text{ET}_p \) = potential evaporation, mm/day.
- \(Q_e \) = latent heat flux, mm/day.
- \(Q_h \) = sensible heat flux, mm/day.
- \(Q_g \) = all net radiation, mm/day.
- \(Q_g \) = subsurface heat flux, mm/day.
- \(\alpha \) = an empirical constant

This method has been found to give reasonable estimates of evaporation in humid regions but has not been widely tested in arid regions (Rosenberg et al., 1983).

All the methods of estimating evaporation or evapotranspiration discussed thus far provide an estimate of Potential Evapotranspiration or the maximum possible rate of evaporation. The availability of water to the evaporating ground surface is assumed unlimited. However, the actual rate of evaporation falls below the maximum potential rate once the ground surface becomes unsaturated. For example, Penman's method appears to give extreme over estimates of actual evapotranspiration when applied to dry regions (Morton, 1975, 1985).

The actual rate of evapotranspiration may be estimated by the complementary relationship proposed by Bouchet (1963). The relationship is based on what Brutsaert (1982) described as "heuristic arguments" since the fundamental assumptions and principles are difficult to verify. In simple terms however, the complementary relationship states that there is a relationship between potential evapotranspiration and actual regional evapotranspiration which may be written as follows:

\[
\text{ETP} + \text{ETR} = 2\text{ETP}_o
\]

where:
- \(\text{ETP} \) = potential evapotranspiration which would occur under the given atmospheric conditions if only available energy is the limiting factor.
- \(\text{ETR} \) = actual evapotranspiration within the region having a characteristic scale in the order of 1 to 10m.
- \(\text{ETP}_o \) = rate of evapotranspiration when the actual regional evapotranspiration is equal to the potential evapotranspiration (i.e., wet environment).

In general, the complementary relationship shown in equation 4 may be evaluated by setting \(\text{ETP} \) equal to the potential rate given by the Penman Method and \(\text{ETP}_o \) equal to the potential rate computed using the Priestley-Taylor formula. Hence, the calculation of the actual evapotranspiration, \(\text{ETR} \), becomes elementary. Brutsaert and Striker (1979) and Morton (1982) have found there to be a good correlation between the actual regional evapotranspiration, \(\text{ETR} \), computed using the complementary relationship and actual measured values determined on the basis of measured energy and water budgets. In spite of the apparent theoretical deficiencies which may be identified, the complementary relationship may be considered useful from an empirical point of view.

All of the most common methods described above for the evaluation of potential or actual evaporation are suitable for some applications. Indeed, the engineering community has been relying on and applying these methods for a number of decades. However, none of the methods described above permit the calculation of an actual evaporation rate versus time curve such as those shown in Figure 1. The fundamental assumption which allows the application of any of the previous methods is that the soil at the ground surface is saturated. In other words, the relative humidity of the soil surface is assumed to be 100 percent. The calculation of the actual evaporation rate of an unsaturated surface is much more difficult because the relative humidity is less than unity. The analysis actually becomes indeterminant since there are more unknowns than unique equations. The solution to this problem requires the availability of more physical relationships to render the calculation determinant.

The solution to the problem of indeterminacy for calculating actual evaporation from an unsaturated ground surface can be resolved by introducing relationships which describe the properties or characteristics of the soil at ground surface. The ground surface and microclimate above the soil-atmosphere boundary function as a coupled system. The response of the ground surface to the atmosphere depends not only on the climatic conditions but also on its own properties such as soil water potential, vegetation type, subsurface water availability, soil texture, hydraulic conductivity and porosity. The flow of water from an evaporating unsaturated soil surface using a coupled soil-atmosphere approach will subsequently be discussed.
which is typical for the Saskatoon area during the mid-summer period.

Both sand columns were identical and were tested simultaneously. The sand surfaces and the underlying profiles were at or near the state of saturation at the start of the evaporation test. The change in moisture content of the surfaces of the sand and down the vertical profiles of the columns were monitored on a regular basis. Small sand samples were retrieved as described by Wilson (1990) through sampling ports installed in the walls of the PVC columns. The evaporation test was conducted for a period of 42 days without interruption.

Figure 3 after Wilson (1990) shows the results of the evaporation test. The line identified as potential evaporation is the evaporation rate measured from the control evaporation pan. The measured rates of evaporation from both columns A and B are nearly identical which provides a good measure of assurance with respect to reproducibility and accuracy. The rate of evaporation from each column is approximately equal to the potential evaporation rate during the first 4 days of the test and then begins to decline rapidly.

The rate of evaporation from the initially saturated sand surfaces should be the same as that for the free water surface. However, the difference in the thermal conductivity between the sand and the water caused a slightly cooler temperature (i.e., approximately 1°C) at the sand surfaces compared to the water surface. This resulted in a slightly lower vapor pressure for the saturated sand surfaces compared to the water surface and hence a slightly depressed potential evaporation rate.

The rate of evaporation from both sand columns suddenly declines after approximately 4 days of drying. The actual rate of evaporation falls rapidly between days 4 and 11 and continues to decrease more slowly over the remaining 31 days. It is interesting to note that the observed pattern of evaporation from the soil surfaces were similar to the typical curves shown in Figure 1 after Hillel (1980). Figure 4 shows the measured water contents profiles in columns A and B over the 42 day test. The sand surfaces were visually wet during the period of high rate or potential evaporation. Measured water contents were below the saturation level but were still within a range which would be described as moist to wet. In general terms, the saturated water content of the sand was approximately 23 percent. The sand maintained a wet to very wet consistency with water contents between 10 and 23 percent and remained moist for water contents well below 10 percent. The sand did not appear dry until the water content fell below approximately 2 percent. The sudden decline in the evaporation rate corresponds to the time at which the sand surfaces became visually dry.

A thin dry skin of sand with a gravimetric water content of less than 2 percent formed on both sand surfaces after 4 days of drying. However, the sand immediately below the dry skin remained quite moist. For example, Figure 4 shows the water content to be approximately 2 percent at the surface and 6 percent just 1 cm below the surface on day 5 of the evaporation test. The thickness of the dry layer increased as the evaporation test continued. A decline in the measured evaporation rate was observed to continue as the thickness of the drying front increased. The surficial moisture content decreased to less than 1 percent after 4 weeks of evaporation and the drying front had advanced to a depth 2 cm. The evaporation rate on day 28 was approximately 1 mm/day compared to the initial potential rate of 8 mm/day. The evaporation rate continued to decrease to less than 0.4 mm/day at the end of the evaporation test after 42 days of continuous drying. The drying front had advanced to a depth of 8 cm at the end of the evaporation test.
THE SOIL-ATMOSPHERE FLUX BOUNDARY MODEL

A theoretical soil-atmosphere flux model for predicting the rate of evaporation from saturated and unsaturated soil surfaces was developed by Wilson (1990). The model computes the moisture flux across the soil-atmosphere boundary using a coupled system of equations which describe heat and mass transfer in the porous soil media. The equations for the transfer processes in the soil are as follows:

For mass flux,

$$\frac{\partial w}{\partial t} = c_w \frac{\partial}{\partial y} (k_w \frac{\partial w}{\partial y}) + c_w \frac{\partial}{\partial y} (D_v \frac{\partial e}{\partial y})$$ \[5\]

where:

- \(h_w\) = total hydraulic head, m.
- \(p_v\) = the partial pressure due to water vapor, kPa.
- \(k_w\) = the coefficient of permeability as a function of matric suction, m/sec.
- \(D_v\) = the diffusion coefficient of the water vapor through the soil, kg * m/hN/sec.
- \(c_w^1\) = the coefficient of consolidation with respect to the water phase, \(\frac{\gamma_w}{\gamma_w^2}\).
- \(c_w^2\) = the coefficient of consolidation with respect to the water vapor phase, \(\frac{p + p_v}{p} \cdot \frac{1}{\gamma_w^2 \cdot m_w^2}\).
- \(m_w^2\) = the slope of the moisture retention curve, 1 / kPa.
- \(\gamma_w\) = unit weight and mass density of water, kN / m³.
- \(\rho_w\) = mass density of water, kg/m³.
- \(p\) = total gas pressure in the air phase, kPa.
- \(t\) = time.

For Heat Flux,

$$C_v \rho_s \frac{\partial T}{\partial t} = \frac{\partial}{\partial y} \left(\lambda \left(\frac{\partial T}{\partial t} \right) \frac{\partial p}{\partial T} \frac{\partial T}{\partial t} \right) \left(D_v \frac{\partial e}{\partial y} \right)$$ \[6\]

where:

- \(T\) = temperature, °C.
- \(C_v \rho_s\) = volumetric specific heat of the soil as a function of water content, J / m³ / °C.
- \(\lambda\) = thermal conductivity of the soil as a function of water content, W/m°C.
- \(L_v\) = latent heat of vaporization of water, J / kg.

Equation 5 was developed on the basis of Darcy’s Law and Fick’s Law to describe the transfer of liquid water and water vapor, respectively (Wilson, 1990). The variables of hydraulic head and vapor pressure in Equation 5 are related to one another by assuming the Gibbs Free Energy of the two phases are in equilibrium. Equation 5 and 6 are similar to those purposed by Dakshinamurthy and Fredlund (1981) for describing heat and mass transfer in porous media. A source term, \(S\), may be included in Equation 5 to account for the uptake of water by roots should the soil surface be vegetated.

The evaporative flux in the soil-atmosphere model is computed by combining Equation 1 for mass transfer in the atmosphere with Equations 5 and 6 and solving all three equations simultaneously. More specifically, the term for vapor pressure at the soil surface, \(p_v\), is common (i.e., \(p_v\) replaces \(p_e\) in Equation 1) to all three equations.

MODEL SIMULATIONS AND THE MECHANISM OF EVAPORATION FROM SOIL

Evaporative fluxes from the sand columns were calculated using the soil-atmosphere flux boundary model. The material coefficients for Equations 5 and 6 such as, \(k_w\), \(c_w^1\), and \(c_w^2\), etc. were evaluated on the basis of the soil moisture retention curve for the sand shown in Figure 5. The relationship between the coefficient of permeability, \(k_w\), and the matric suction for the sand was evaluated using the method described by Laliberte et al (1968) and is shown in Figure 6. The thermal conductivity and volumetric specific heat of the sand were computed using the method described by de Vries (1963).

The results of the model simulation are shown in Figure 7. The evaporative flux computed by the soil-atmosphere flux model compares well with the measured fluxes from both columns A and B. The model computed a similar period of high rate or potential evaporation of approximately 7 mm/day with a sudden decline occurring after 4 days. The computed rate of evaporation continues to fall similar to the measured rates and falls to the same slow residual rate of 0.4 mm/day after 42 days.

Figure 8 shows the measured and computed water contents for the columns after 0, 1, 5, 21, and 42 days of evaporation. The computed water contents compare well to the measured water contents. The model simulation also indicates that a thin dry skin with a low water content below 2 percent develops after 5 days. The computed water content of the soil below this dry layer is considerably wetter. The thickness of the dry layer continues to increase with time which corresponds to the progressive decline in the computed evaporation rate. The computed drying front advances to approximately 10 cm after 42 days similar to the measured drying front of 8 cm.

The turbulent mixing parameter, \(f(u)\), in Equation 1 used in the model simulation was determined on the basis of the measured rate of evaporation from the free water surface in the control pan. The calculation of this term is simple since all the other terms are

![Figure 5 Water Content Retention Curve for the Sand.](image-url)
measured or calculated directly. For example, E equals the measured potential evaporation, p_{sv} equals the saturated vapor pressure of the free water surface at the measured temperature during the test and p_{e} equals the vapor pressure in the environmental chamber computed on the basis of the measured relative humidity and temperature of the air. The calculated value of E is substituted along with the vapor pressure, p_{e} in the chamber into Equation 5 for computing the evaporative flux from the sand columns. The only variable which changes when computing the evaporation rate from the sand compared to the free water surface evaporation rate is the surface vapor pressure, p_{sv}. The vapor pressure of the water remains constant at the saturated value (i.e., relative humidity of 100 percent). The vapor pressure of the sand surface is initially equal to

\[p_{sv} = p_{sv} h_T \]

where:

- p_{sv} = the actual vapor pressure within the soil.
- p_{sv} = the saturation vapor pressure of the soil water at its temperature, T.
- h_T = relative humidity as a function of total suction and temperature.

\[h_T = \frac{\Psi W}{e^{RT}} \]

- Ψ = total suction in the soil, m.
- W = molecular weight of water, 0.18 kg/mole.
- R = universal gas constant, 8.314 J/mole.K.
- T = absolute temperature, °K.
- g = acceleration due to gravity, m/sec^2.

Figure 9 shows a plot of the relation between relative humidity and total suction shown in Equation 7. The relative humidity remains high at approximately 100 percent for values of total suction less than about 1000 kPa. However, the relative humidity and hence the vapor pressure begin to decline once the total suction exceed about 3000 kPa. The moisture retention curve in Figure 5 shows that the water content of the sand used in the evaporation test is approximately 2 percent at 3000 kPa of suction. This corresponds to
the water content of the sand surface at which the decline in actual measured and computed rates of evaporation were observed. The relative humidity and vapor pressure begin to fall rapidly once the total suction exceeds 3000 kPa. An increase in total suction from 3000 kPa to 5000 kPa corresponds to a slight decrease in the water content of the sand from 2.0 to 1.8 percent. This explains the rapid decline in evaporation rate once the water content of the sand surface decreases below 2 percent.

The measured and computed rates of evaporation continued to decrease during the test as the surfaces of the sand became progressively drier. The lowest rate of evaporation occurred at the end of the test when the sand surface was essentially dry. The measured and computed water contents of the sand surfaces for the columns were approximately 0.6 percent on day 42 of the test. This corresponded to a total suction of about 200,000 kPa and a relative humidity of only 20 percent. The reduction in the actual and computed evaporation rates from the sand surfaces occurred as a function of increasing total suction in the pore-water of the sand surface.

In summary, the rate of evaporation from the sand surface is approximately equal to the potential rate of evaporation provided the total suction at the sand surface is less than 1000 kPa. The evaporation rate is rapidly suppressed once the total suction exceeds 3000 to 5000 kPa. Extremely high suctions (i.e., 200,000 kPa) developed at the sand surface as the drying continued. In the case of the column drying tests, the actual and computed rates of evaporation decreased from the high potential rate of approximately 7 mm/day to 0.4 mm/day as a result of the development of high total suctions in the sand surface.

A MODIFIED PENMAN FORMULATION

The soil-atmosphere model developed for the simulation of the column drying test is not suitable for application to practical problems in nature. The computation of the evaporative flux from a soil surface using Equation 1 requires the evaluation of the parameter, \(f(u) \). This was straightforward in the case of the column test because it was possible to use the control evaporation pan. Detailed information regarding surface roughness, wind speed and atmospheric stability are required to evaluate \(f(u) \) for a field problem. An even more serious difficulty occurs in that the surface temperature must be known in order to apply Equation 1. Gray (1970) states this is an extremely difficult parameter to determine for actual field problems.

The method proposed by Penman (1948) overcomes the problem of evaluating surface temperature by combining Equation 1 with the energy balance at the ground. Penman (1948) formulated his approach for the evaluation of potential evaporation from saturated surfaces. However, the formulation may be extended to unsaturated surfaces if the vapor pressure or relative humidity of the surface is known (Wilson, 1990).

Wilson (1990) provides a modified Penman formulation which may be applied to evaporation from unsaturated soil surfaces as follows:

\[
\frac{\Gamma Q + \nu \varepsilon_a}{\Gamma + \Delta \nu} = E
\]

where:

- \(\varepsilon_a = f(u) \rho_a (B-A) \)
- \(B = \text{the inverse of the relative humidity of the air} \)
- \(A = \frac{1}{h_r} \)
- \(h_r = \text{relative humidity at the soil surface, Eq. 7.} \)

Equation 8 can be incorporated into the soil-atmosphere model for simulating evaporative fluxes in actual field problems. Gray (1970) presents an example calculation of potential evaporation from a saturated surface for Saskatoon, Saskatchewan in July. A potential rate of evaporation was equal to 7.7 mm/day based on typical climatic data. Wilson (1990) used the modified Penman Method to compute evaporative fluxes from the soil surface assuming the same soil properties as the sand used in the column drying test and the identical climatic conditions used by Gray (1970).

Figure 10 shows the results of the soil-atmosphere model simulations using the modified Penman formulation. Simulations were carried out with the water table at various depths below the surface. Curve No. 1 shows the evaporation rate with the water table positioned just below the ground surface. The high potential rate of evaporation of 7.7 mm/day was constantly maintained for the entire 10 days of the simulation. This occurred because the phreatic surface was sufficiently close to the ground surface to maintain low suctions and near saturated conditions at the soil surface. Curve No. 2 shows the effect of lowering the water table to 0.75 m below the surface. In this simulation, the initially, saturated sand surface quickly desaturates and surface suctions increase resulting in a decrease in the evaporation rate from 7.7 mm/day to 2.1 mm/day. Upward flow from the water table is insufficient to maintain the high evaporative flux from the surface. Lowering the water to 1.0 m below the surface reduces the evaporative flux further to approximately 0.4 mm/day 10 days after
initial saturation as shown in curve No. 3.

Large values of total suction were computed at and near the sand surface for the simulations with the water table 0.75 m and 1.00 m below the surface. A drying front developed at the surface and the thickness of the drying front controlled the evaporative flux. The computed water content of the sand became so low that the coefficient of permeability with respect to the water phase approaches zero. In other words, the liquid water phase becomes discontinuous, if not absent. The upward flux of water from the water table proceeds only a short distance as liquid in an unsaturated porous media and then changes phase to water vapor. Vapor diffusion through the surficial dry soil layer at the ground surface becomes the dominate process which controls evaporation from dry, unsaturated soil surfaces.

SUMMARY AND CONCLUSIONS

The results of the column evaporation test show that the rate of evaporation from a soil surface depends on the availability of water. The rate of evaporation from the saturated sand surface is approximately equal to the potential evaporation rate from a free-water surface. The actual rate of evaporation declines as the sand surface becomes unsaturated and the total suction exceeds approximately 3000 kPa. Evaporative fluxes from the soil surface are dependent on total suction and decrease as suction increases. In addition to the total suction values at the ground surface, long-term evaporation rates depend on the groundwater levels and the flow properties of soil beneath the surface.

The proposed soil-atmosphere flux boundary model predicted actual evaporation from a desiccating column of sand reasonably well. The model can be extended for field applications using a modified Penman formulation. Model simulations show that groundwater levels are an important factor with respect to predicting actual evaporative fluxes.

REFERENCES

The Effect of Negative Pore-Water Pressures on Slope Stability Analysis. MSc Thesis, University of Saskatchewan, Saskatoon, Canada.

PENMAN, H.L., 1948.

PHILIP, J.R., 1957.

ROSENBERG, N.J., BLAD, B.L. and BERMA, S.B., 1983.

SATTLER, P.J., 1989.

THORNTHWAITE, C.W., 1948.

WORLD METEOROLOGICAL ORGANIZATION, 1974.
International glossary of hydrology. WMO Report, No. 385, pp. 393.