Comparison of 2-D and 3-D slope stability analyses for unsaturated soil slopes

Lulu Zhang
State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University
Shanghai, China

Murray D. Fredlund
SoilVision Systems Ltd., Saskatoon, SK., Canada

Delwyn G. Fredlund
Golder Associates Ltd., Saskatoon, SK., Canada

Haihua Lu
SoilVision Systems Ltd., Saskatoon, SK., Canada

ABSTRACT
Most past comparative studies between 2-D and 3-D stability analyses have ignored the effect of negative pore-water pressures (i.e., matric suctions) in the soil zone above the groundwater table. In this paper, a comparison is made between 2-D and 3-D slope stability analyses on soil slopes where a portion of the soil profile has matric suctions. The factors of safety on simple geometry slopes, complex geometry slopes which have two intersecting slope surfaces, are investigated under various shear strength parameters and groundwater conditions. For simple slopes with a low slope angle, the difference in factor of safety between a 2-D and 3-D slope stability analysis, (i.e., $ΔFs/Fs_{2D}$), generally ranges from 9% to 16% when ϕ0 is equal to 15 degree. The value of $ΔFs/Fs_{2D}$ for a steep, simple slope is generally larger than that of a low angle, simple slope. The difference between a 2-D and 3-D stability analysis was most pronounced for concave geometries where a portion of the soil profile contained unsaturated soils. The values of $ΔFs/Fs_{2D}$ for concave slopes with a corner angle between 180 to 270 degrees can be as large as 20 to 59% when ϕ0 is equal to 15 degree. The case history of the high-wall stability failure at the Poplar River coal mine was back-calculated to illustrate the effect of unsaturated zone on back-analyzed shear strength parameters.

1 INTRODUCTION

Two-dimensional (2-D) limit equilibrium methods (LEM) of slope stability analysis remain the most common method of analysis in slope engineering practice. However, most engineering problems have three-dimensional characteristics that cannot be taken into account by conventional two-dimensional plane strain representations. Most natural landslides are three-dimensional in character and the geometries are too complex to be accurately modeled using a two-dimensional representation of the geometry. Other engineering problems which are inherently three-dimensional include mining pit, tailings and mine rock piles, deep excavation with corners, earth and rock fill dam or levees, earth storage, and municipal solid waste slope (Fredlund et al. 2012b; Yu et al. 2005). A three-dimensional (3-D) analysis can accommodate variations in geometry, pore-water pressures, and material properties across a site.

Three-dimensional methods of slope stability analysis are usually extensions of conventional two-dimensional approaches (Hovland 1977; Chen and Chameau 1982; Leshchinsky and Baker 1986; Zhang 1988, Hungr et al. 1987; Lam and Fredlund 1993; Chen et al. 2001; Cheng and Yip 2007; Zheng 2012). Kalatehjari and Ali (2013) undertook an extensive review of 3-D analyses. It is generally assumed that a 2-D slope stability analysis provides a more conservative estimate of a 3-D slope
stability problem, provided that 2-D stability analysis is calculated for the most critical two-dimensional section (Duncan 1996). The difference in the factors of safety of a slope between a 2-D and 3-D analysis is generally less than 15% for simple slope geometries. Adriano et al. (2008) found that differences in the critical factor of safety of 15% to 50% between 3-D and 2-D stability analysis based on finite element modeling for concave and convex slopes. There are some reported differences in factor of safety that are greater than 50% (Chen and Chameau, 1982; Leshchinsky and Barker, 1986). The differences were mainly due to the shape of critical slip surfaces. Leshchinsky et al., (1992), Lam and Fredlund (1993) and Stark and Eid (1998) presented case studies which demonstrated that ignoring 3-D effect may lead to an over-estimation of the in situ shear strength. A 3-D analysis was recommended for the back-analysis of slope failures so the back-calculated shear strength would reflect the 3-D end effects.

Most previous studies comparing 2-D and 3-D stability analysis ignore the effect of negative pore-water pressures (i.e., matric suction) in the soil zone above the groundwater table (Leong and Rahardjo, 2012). In this paper, a comparison study is reported between 2-D and 3-D slope stability analysis for soil slopes where a portion of the soil profile has matric suction.

2 THREE-DIMENSIONAL GENERAL LIMIT EQUILIBRIUM METHOD FOR SLOPE STABILITY ANALYSIS

Lam and Fredlund (1993) proposed a 3-D method as an extension of the general 2-D limit equilibrium method of Fredlund and Krahn (1977). A rotational surface with a single direction of movement was assumed for the slip surface. The basic definition of these inter-column force functions was similar to that proposed by Morgenstern and Price (1965) including five relationships between normal and shear inter-column forces. Lam and Fredlund (1993) used the finite element analysis results to compute inter-column forces for typical slopes and suggested that it was reasonable to consider only the E/X and V/P functions rather than all five functions when performing a three-dimensional analysis. The free-body diagram of a column for the general 3-D limit equilibrium method with simplified inter-column forces is presented in Fig. 1. The forces are defined as follows: W is weight of the column; N is the normal force at the base of each column; S_m is the shear force mobilized at the base of each column; E_i, E_R are inter-column normal forces on YZ plane, where the subscripts L and R represents the left side and right side planes, respectively; P_i, P_R are the inter-column normal forces on XZ plane; X_L, X_R are the inter-column vertical shear force on YZ plane; V_L, V_R are the inter-column vertical shear force on XZ plane; α_x and α_y are the inclination angles of the column base in the X and Y directions, respectively; θ_x, θ_y, θ_z are direction angles of the normal force N at the column base along X, Y, Z directions, respectively.

\[
F_m = \frac{\sum (c' A + (N - U) \tan \phi') (\cos \alpha_i d_x + \sin \alpha_i d_y)}{\sum (N \cos \theta_i d_x + N \cos \theta_i d_y + W d_z)} \tag{1}
\]

The factor of safety with respect to force equilibrium, F_m, in 3-D is derived by summing forces in the x-direction over the entire failed mass (Lam and Fredlund, 1993; Fredlund et al., 2012a):

\[
F_i = \frac{\sum (c' A + (N - U) \tan \phi') \cos \alpha_i}{\sum N \cos \theta_i} \tag{2}
\]

where A is the area of the column base, c' is effective cohesion, ϕ' is the effective friction angle, U is the pore-water force acting on the base of the column, d_x is the x-moment arm with respect to the axis of moments, d_y is the y-moment arm with respect to the axis of moments. Both the equations for F_m and F_i are non-linear since the normal force N in each equation is also a function of the factor of safety. An iterating procedure can be used to solve the moment and force equilibrium factors of safety.

In this study, the slip surface in 3-D slope stability analysis is assumed to be ellipsoidal. The computer software program, SVSlope (Fredlund, 2009), which has incorporated a variety of commonly used 3-D limit equilibrium methods of slope analyses, is used to calculate the factors of safety for the example problems.
3 EXAMPLES OF SIMPLE GEOMETRY SLOPES

The factors of safety on simple geometry slopes with a low slope angle and a steep slope angle are first investigated using various selected shear strength parameters and groundwater conditions.

3.1 Stability analysis of a low angle, simple slope

The low angle simple geometry slope is 20 meters high and the slope angle is 30 degree (Fig. 2). Three levels of groundwater table (denoted as GWT #1, #2 and #3) are considered. GWT #1 is a shallow groundwater table which represents the situation where the slope is almost fully saturated. GWT #3 is a deep groundwater table. The maximum difference between the three groundwater levels is approximately 10 m. The pore-water pressure conditions in the slope are assumed to be hydrostatic both above and below the piezometric line.

Assuming the effective shear strength parameters are fixed values (i.e., c’ is 10 kPa and φ’ is 24°), Figure 3 presents the difference in the factor of safety between a 2-D and 3-D slope stability analysis (ΔF/Fs2D), for various φb values. The factors of safety for both 2-D and 3-D analyses are obtained for critical slip surfaces. Figure 3 shows that the difference of factor of safety between 2-D and 3-D slope stability analysis, ΔF/Fs2D, is increased with the increase of φb. The increased rate of change in ΔF/Fs2D is slightly affected by the location of groundwater table. The variation of ΔF/Fs2D is largest for GWT #2, which is neither the highest nor the lowest groundwater table among the three assumed three ones. For the highest groundwater table (GWT #1), most portion of critical slip surfaces are in the saturated soil zone. The increase of φb does not contribute much to the increase of ΔF/Fs2D. For the lowest groundwater level (GWT #3), the critical slip surfaces are mainly in the unsaturated zone for φb decreases from zero to 15 degree (62.5% φ) and the increased rate of ΔF/Fs2D is high. However, with the further increase of φb value, the critical slip surface becomes deeper and the contribution of unsaturated zone to ΔF/Fs2D is reduced.

![Figure 2](image)

Figure 2. Geometry of a low angle slope geometry along with three levels of the groundwater table.

![Figure 3](image)

Figure 3. Difference of factor of safety for the low slope geometry with c’ = 10 kPa and φ’ = 24°.

![Figure 4](image)

Figure 4. Contours of Fs difference, ΔF/Fs2D (%) for the low slope geometry (GWT #2): (a) φb = 0 (b) φb = 15°.

Figure 4 presents the contours of ΔF/Fs2D for the low angle, simple slope for various combinations of shear strength parameters. Figure 4(a) and 4(b) show the contours of ΔF/Fs2D with an assumed φb value of zero.
and 15 degree, respectively. The difference in factor of safety between a 3-D and 2-D analysis monotonically increases with c' and ϕ'. The variation of $\Delta F_s/F_{s2-D}$ ranges from 4% to 9% when the effect of matric suction is ignored. The variation in $\Delta F_s/F_{s2-D}$ ranges from 9% to 16% when ϕ^b is 15 degrees.

3.2 Stability analysis of a steep angle, simple slope

The steep slope is 30 meters high and the slope angle is 50 degree (Fig. 5). Three levels of groundwater tables are once again considered. The groundwater table varies from a high level (GWT #1) which exits at the toe of the slope to a low level (GWT #3) which is around 18 m below the toe of the slope.

![Figure 5. Geometry of a steep angle simple slope geometry and three levels of groundwater table.](image)

Figure 5 presents the difference of factor of safety for the steep slope than for the low angle slope. This is mainly because the assumed variation in the depth of the groundwater table is much greater for the steep slope than for the low angle slope.

Figure 7 presents the contours of $\Delta F_s/F_{s2-D}$ for the low angle, simple slope for various combinations of shear strength parameters. The difference in the factor of safety does not monotonically increase with c' and ϕ'. With the omission of ϕ^b (Figure 7a), the variation of $\Delta F_s/F_{s2-D}$ ranges from 6% to 13%. The values of $\Delta F_s/F_{s2-D}$ range from 12% to 18% when ϕ^b is assumed to be 15 degrees (Figure 7b). These results are for GWT #2. According to Figure 6, the changes of $\Delta F_s/F_{s2-D}$ may be greater for the case of the GWT#3 level. Comparing Figure 7 to Figure 4, it can be seen that the difference of factor of safety between a 2-D and 3-D analysis for a steep slope is generally larger than that for a low angle slope. However, for a simple, steep slope, $\Delta F_s/F_{s2-D}$ does not increase monotonically with the shear strength parameters (i.e., c', ϕ').

![Figure 6. Difference of factor of safety for the steep slope geometry with $c' = 10$ kPa and $\phi' = 34^\circ$ with various groundwater tables.](image)

The peak values occur around ϕ^b equal to 40% to 60% of ϕ'. The effect of groundwater table level is more significant for the steep slope than for the low angle slope.

![Figure 7. Contours of $\Delta F_s/F_{s2-D}$ (%) for the steep slope geometry with various shear strength parameters (GWT #2): (a) $\phi^b = 0$ (b) $\phi^b = 15^\circ$.](image)
A parametric study was conducted on a steep slope with two intersecting slope surfaces (i.e., surfaces forming a concave geometry or a convex geometry). The slope angle was 45 degree. The height of slope was 30 m. The unit weight of the soil was 18.0 kN/m³ and \(c' \) was 10 kPa and \(\phi' \) was 34°. The groundwater table was about 5 m below the toe of the slope. The corner angle is defined as the angle between the two intersecting slope surfaces as shown in Figure 8. A slope with a corner angle of 180 degree constitutes a simple geometry slope. A corner angle between 0 and 180 degree is a convex slope. A corner angle ranging between 180 and 360 degrees was defined as a concave geometry slope.

Figure 8. Geometry of steep slopes with two intersecting slope surfaces (a) convex slope geometry (b) concave slope geometry.

Figure 9. Critical slip surface and failure mass for the concave slope geometry with a corner angle of 270 degree (\(c' = 10 \) kPa, \(\phi' = 34^\circ \), and \(\phi^b = 15^\circ \)).

Figure 10. Critical slip surface and failure mass for the concave slope geometry with a corner angle of 270 degree (\(c' = 10 \) kPa, \(\phi' = 34^\circ \), and \(\phi^b = 0^\circ \)).

Figure 9 shows the critical slip surface for a concave slope with a corner angle of 270 degree. The corresponding factor of safety was 2.980. Figure 10 presents the critical slip surface for the convex slope with a corner angle of 270 degree and the omission of matric suction (\(\phi^b = 0^\circ \)). The critical slip surface is much shallower than that shown for the concave slope (Figure 9). The calculated factor of safety was 1.387.
from 19.5 to 26.0 m. The distance from the shoe to the crest of the high wall ranged between 7.6 to 15.2 m away from the crest of the high wall. The slope failure occurred along a slicken-sided clay layer approximately 7.6 m below the crest of the high-wall. A layer of wet sand about 1.2 m in thickness was observed above the clay layer. At the time of the failure, the dragline was walking parallel to the high-wall about 20 m away from the crest of the high-wall. The slope failure appeared to be the result of the high stresses exerted by the shoe of the dragline. The external load due to the shoe of the dragline was approximately 215 kPa applied on the slope over an area of 21.9 m by 4.3 m. The distance from the shoe to the crest of the high-wall ranged from 19.5 to 26.0 m.

Figure 11. Difference of factor of safety for the steep slope geometry with various corner angles.

Figure 11 illustrates the effect of ϕ^d on ΔF_{S2-D} for slopes with various corner angles. The value of ΔF_{S2-D} is increased substantially with the increase in the ϕ^d value. If ϕ^d is zero, the range of ΔF_{S2-D} varies from 6% to 34% for slope with corner angle ranging from 90 degree (i.e., convex) to 270 degree (i.e., concave). When ϕ^d is 15 degree, the ΔF_{S2-D} ranged from 12% to 59%. The effect of ϕ^d is more pronounced for concave slopes. The range of ΔF_{S2-D} is even smaller than that of simple steep slope for convex slopes.

5 CASE STUDY OF THE POPULAR RIVER MINE HIGHWALL FAILURE

The 2-D and 3-D slope stability analysis was conducted on the case history of the high-wall stability problem at the Poplar River coal mine (Clifton et al., 1986; Lam and Fredlund, 1993).

The Poplar River mine was an open-pit coal mine developed by Saskatchewan Power Corporation to supply coal to the Poplar River Power Station near Coronach, Saskatchewan. A high-wall failure occurred at location TC10 on 22 September 1982. A schematic view showing the geometry of the failed mass along with the inferred position of the slip surface and the approximate position of the external load is illustrated in Fig. 12. The failed high-wall was 15.2 m high with a slope angle of about 33 degrees. The failure occurred along a slicken-sided clay layer approximately 7.6 m below the crest of the high-wall. A layer of wet sand about 1.2 m in thickness was observed above the clay layer. At the time of the failure, the dragline was walking parallel to the high-wall about 20 m away from the crest of the high-wall. The slope failure appeared to be the result of the high stresses exerted by the shoe of the dragline. The external load due to the shoe of the dragline was approximately 215 kPa applied on the slope over an area of 21.9 m by 4.3 m. The distance from the shoe to the crest of the high-wall ranged from 19.5 to 26.0 m.

The effective cohesion of and an effective friction angle of internal of the till stratum was 6 kPa and 34°, respectively, based on laboratory test results. According to the laboratory tests (Clifton et al., 1986), the effective cohesion went to zero and the effective friction angle ranged from 11° to 22.8° for the clay stratum at residual conditions.

The slope failure was analyzed using both 2-D and 3-D slope stability analysis. Figure 13 presents the slip surface in the 2-D stability analysis and the failed mass in the 3-D stability analysis. Since no pore-water measurements were obtained at the time of failure, the slope was analyzed as a function of the height of the water table above the slip surface. The residual friction angle for the clay was back-analyzed using the GLE method of analysis satisfying moment and force equilibrium. In the back-analysis, the shear strength of the entire slip surface was assumed to be in the weak clay layer. The unit weight of all the soils was taken to be 19.3 kN/m³. The back-analyzed residual friction angles of the clay are considerably higher when using a two-dimensional analysis than when using a three-dimensional analysis as shown in Fig. 14. The back-analyzed friction angle for the weak clay layer was over-estimated by around 40% by 2-D analysis.

Two-dimensional and three-dimensional stability analyses were conducted for the condition with the groundwater table being 2 meters below the slip surface. These analyses illustrate the effect of unsaturated zone. The slip surface of the actual failed mass was used. The friction angle of the clay was assumed to be 14°, which was the design value based on the subsequent re-analysis of failures (Clifton et al. 1986). Figure 15 presents the factors of safety with respect to the ratio between ϕ^d and the frictional angle ϕ. The difference between 2-D and 3-D slope stability analysis is relatively large for this case history. The value of ΔF_{S2-D}, ranged from 71% to 90% when ϕ^d increased from 0% to 75% of the effective angle of internal friction, ϕ'.
Figure 13. Geometry and failure soil mass of slope stability analysis for Poplar River coal mine high-wall failure.

Figure 14. Back-analyzed friction angle of the clay layer for various groundwater table positions.

Figure 15. 2-D and 3-D slope stability results considering the effect of the unsaturated zone with the groundwater table 2 m below the slip surface.

Two-dimensional and three-dimensional stability analyses were conducted for the condition with the groundwater table being 2 meters below the slip surface. These analyses illustrate the effect of unsaturated zone. The slip surface of the actual failed mass was used. The friction angle of the clay was assumed to be 14°, which was the design value based on the subsequent re-analysis of failures (Clifton et al. 1986). Figure 15 presents the factors of safety with respect to the ratio between φ^b and the frictional angle φ'. The difference between 2-D and 3-D slope stability analysis is relatively large for this case history. The value of ΔF_s/F_s2-D, ranged from 71% to 90% when φ^b increases from 0% to 75% of the effective angle of internal friction, φ'.

6 CONCLUSIONS

A comparative study between 2-D and 3-D slope stability analysis for unsaturated soil slopes is presented in this paper. The major findings can be summarized as follows.

For simple slopes with a low slope angle, ΔF_s/F_s2-D monotonically increases with an increase in c', φ', and φ^b values. The variation in ΔF_s/F_s2-D with various combinations of c' and φ' values ranges from 4% to 9% with φ^b equal to zero. When φ^b is assumed to be 15 degree, the values of ΔF_s/F_s2-D range from 9% to 16%.

For a simple, steep slope, ΔF_s/F_s2-D does not increase monotonically with the shear strength parameters (i.e., c', φ', and φ^b). The difference of factor of safety between 2-D and 3-D analysis for a steep, simple slope is generally larger than that of a low angle, simple slope. When φ^b is 15 degree, the values of ΔF_s/F_s2-D for the steep, simple slope range from 12% to 18% for various combinations of c' and φ' values. The effect of groundwater table on the difference between 2-D and 3-D factors of safety is more pronounced for the simple, steep slope than for the low angle slope.
The difference between a 2-D and 3-D stability analysis was most pronounced for concave geometries where a portion of the soil profile contained unsaturated soils. When ϕ was equal to 15 degree, the values of $\Delta F/F_{2-D}$ for concave slopes with a corner angle between 180 to 270 degree can be as great as 20 to 59%.

The back-analyzed shear strength parameters can be significantly over-estimated when using a 2-D stability analysis. For the Poplar mine high-wall failure, the back-analyzed residual friction angle was over-estimated by around 40% when using a 2-D analysis and the value of $\Delta F/F_{2-D}$, ranges from 71% to 90% when considering the unsaturated zone.

ACKNOWLEDGEMENTS

The work in this paper was substantially supported by the Natural Science Foundation of China (Project No. 41172252) and National Basic Research Program of China (973 Program, Project No. 2014CB049100). The authors are grateful for the supports from the BaJian Talent Program by the Organization Department of the Central Committee of the CPC and the Shanghai Rising-Star Program (Project No. 12QA1401800).

REFERENCES

