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Abstract 
 
Unsaturated soils theory can be laid out as a series of governing partial differential equations 
(PDEs), allowing for the solution of complex problems, including the analysis of volume 
change of expansive and collapsible soils, the design of soil cover systems, the analysis of 
transient slope stability, to name only a few problems.  The practical relevance of design 
approaches based on PDEs has increased as a result of recent advances in computer 
geotechnics and the rise of problem solving environments.  This paper presents an overview 
of PDEs governing the behaviour of unsaturated soils.  Numerous phenomena were 
considered, including air flow, liquid water and vapour water flow, static equilibrium, total 
volume change, yield, heat transfer, and freeze-thawing processes.  The PDEs describing 
unsaturated soil behaviour may also be simplified and de-coupled, in order to neglect 
processes that are unimportant in certain situations.  Several degrees of de-coupling 
traditionally adopted in commercially available software packages are described and the 
consequences of such simplifications are explored.  Finally, the use of general PDE systems 
along with general purpose partial differential equations solvers is shown as the way forward.  
It is envisaged that state-of-the-art problem solving environments can be used as the ultimate 
tool in unsaturated soil mechanics practice. 

 
Keywords:  unsaturated soils, continuum mechanics, partial differential equation, numerical 
modelling, soil-water characteristic curve. 
 
 
 
1 Relevance of partial differential equations to unsaturated soil mechanics 
 
Continuum mechanics and differential calculus have been traditionally used for modelling 
geotechnical engineering problems.  Continuum mechanics theories are often expressed in the 
form of partial differential equations (PDEs) that govern the distribution of soil state variables 
in space and time.   
 
The partial differential equations governing unsaturated soil behaviour involve numerous 
coupled processes with nonlinear and heterogeneous soil properties and nonlinear boundary 
conditions.  PDEs have been applied for the analysis of several unsaturated soil problems, 
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such as volume change of expansive and collapsible soils, the design of soil cover systems, 
and the transient slope stability, to name only a few problems.   
 
The practical relevance of analyses based on PDEs has increased as a result of recent 
advances in computer geotechnics and the rise of problem solving environments, PSEs.  In 
depth knowledge of finite element theory and other numerical formulations becomes 
unnecessary when reliable PSEs are available.   
 
In order to use a PSE effectively the analyst must understand the physics and soil properties 
involved and be able to select appropriate boundary and initial conditions that reproduce field 
conditions.  It becomes advantageous to be able to “read” and formulate PDEs for a problem 
in hand. 
 
Figure 1 presents the elements required in order to model an unsaturated soil problem, 
considering as an example a three-dimensional slope.  According to the continuum mechanics 
approach, unsaturated soil phenomena can be modelled as follows: 
 
1. Identify the physical processes of concern associated with the problem in hand; 
2. Establish the “continuous variables” acting upon a representative elemental volume 

(REV) of soil;  
3. Develop field equations governing the physical processes of concern by making the 

assumption that the media can be considered a continuum from a macroscopic 
standpoint (i.e., considering a REV of soil) and using measurable soil properties: 
a. Develop conservation laws; 
b. Develop constitutive laws; 
c. Develop a final system of well-posed determinate partial differential equations. 

4. Establish initial, internal, and boundary conditions for the problem; 
5. Provide a mathematical solution of the system of PDEs. 
 
The objective of this paper is to show how unsaturated soils theory can be laid out based on 
the continuum mechanics approach described above and as a series of PDEs.  An overview of 
PDE’s governing the behaviour of unsaturated soils is presented along with a detailed 
description of how the PDE’s can be derived.  Several phenomena are considered herein, 
including liquid water flow, water vapour flow, air flow, static equilibrium, total volume 
change, and heat flow. 
 
The coupling between several unsaturated soil phenomena are described in terms of the 
coefficients and variables of the PDEs.  The PDEs describing unsaturated soil behaviour may 
also be simplified and de-coupled, in order to neglect processes that are unimportant in certain 
situations.  Several degrees of de-coupling traditionally adopted in commercially available 
software packages are described and the consequences of such simplifications are explored.   
The Cartesian coordinate system was adopted throughout the paper and all equations were 
written for a general three-dimensional case.  Two-dimensional conditions can be easily 
obtained, as a simplification of the equations presented herein.  The equations presented can 
also be converted to axis-symmetric conditions by using a cylindrical coordinate system.  
Though tensor notation offers an elegant and general way of presenting the differential 
equations governing unsaturated soil behaviour, engineering notation was adopted.  Engineers 
in general are more prepared to understand the physics of soil behaviour, but may not grasp 
tensor notation promptly. 



Fredlund, D.G., Gitirana Jr., G. 

 3

 

y

x
dx

dy
dz

O

z

Boundary conditions: 
 - pore-water pressure and/or water flow 
 - pore-air pressure and/or air flow 
 - displacements and/or external forces 
 - temperature and/or heat flow 
 - etc. 

Initial conditions (transient problems): 
 - pore-air pressure, pore-water pressure,  
   stresses, stress history, temperature, etc. 
Internal conditions: 
 - pore-air, pore-water, and heat sinks  
 - body forces (gravity) 

Water 
table 

Problem 
Geometry 

Representative Elemental 
Volume – R.E.V. 

∫∫=⎥
⎦

⎤
⎢
⎣

⎡
σ TimeVolumeaw Twvuuu

R.E.V.  theusing derived system PDE
etc. ,,,,,,,

ofon Distributi

 
Figure  1 Continuum mechanics approach for solving unsaturated soil problems: 

problem domain subjected to initial and boundary conditions and governed by 
a system of PDE’s (variables defined later in the text). 

 
 
2 Assumptions traditionally adopted in the derivation of partial differential 
equations governing unsaturated soil behaviour 
 
A series of assumptions form the backdrop for the derivation of the partial differential 
equations governing the behaviour of unsaturated soils.  The following set of assumptions can 
be considered generally valid: 
 
1. soil phases can be described using a continuum mechanics approach; 
2. pore-air and all of its constituents (including water vapour) behave as ideal gases; 
3. local thermodynamic equilibrium between the liquid water and water vapour phases 

exists at all times at any point in the soil; and 
4. atmospheric pressure gradients are negligible. 
 
In addition to the above general assumption, a number of specific simplifications can be 
adopted.  The following simplification limit the generality of the PDE’s presented herein, but 
are valid for most conditions found in the practice of geotechnical engineering: 
 
1. liquid water and soil particles are assumed incompressible; 
2. small strain theory is valid; 
3. thermal strains are negligible; 
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4. osmotic pressure gradients become negligible at total suctions less than 1500 kPa; 
5. temperature within the soil remains below the boiling point and above the freezing 

point of water at all times; 
6. hysteretic behaviour of the soil-water characteristic curve can be neglected or 

approximated by taking the logarithmic average between the main drying and main 
wetting curves. 

 
The six assumptions described above may become inadequate under certain situations.  For 
instance, small strain theory may result in high inaccuracies for highly compressible media, 
such as certain landfills and mine tailings.  Water compressibility has an important impact on 
the analysis of regional groundwater systems (i.e., large domains).  Water flow analysis may 
require the consideration of freeze and thawing for cold regions.  Also, thermal strains may be 
of interest in specific design conditions, such as confined clay buffers used for underground 
radioactive waste disposal. 
 
Other simplifying assumptions are acceptable for numerous practical problems but are not 
adopted herein.  Some of these assumptions are as follows: 
 
1. the air phase may be assumed as in permanent contact with the atmosphere (i.e., pore-

air pressure gradients are negligible); 
2. dissolution of air into the liquid water phase may be neglected; 
3. overall volume change may be neglected in air and water flow analyses; 
 
The description of typical assumptions presented in this section is not exhaustive.  Additional 
assumptions associated with the development of constitutive relationships will be described 
along this paper. 
 
 
3 Stress state variables 
 
Appropriate stress state variables must be used, that are able to accommodate the 
characteristics of a multi-phased continuum, such as an unsaturated soil.  Fredlund and 
Morgenstern (1977) presented a theoretical justification for the use of two independent stress 
state variables.   
 
The stress state variables for an unsaturated soil are made of possible combinations of the 
total stress, σ, the pore-air pressure, ua, and the pore-water pressure, uw.  The net stress, (σ – 
ua), and matric suction, (ua – uw), are normally used.  Tensors for the two independent stress 
variables can be written as follows:  
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where: 

σi = normal stress acting on the i plane, on the i direction; 
τij = shear stress acting on the i plane, on the j direction. 

 
The net stress and matric suction tensors reduces to a single stress variable (i.e., effective 
stress) for saturated conditions, providing an approach consistent with that traditionally used 
in saturated soil mechanics (Terzaghi, 1943).  The two stress state variables above are used 
throughout this paper. 
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4 Differential conservation equations for unsaturated soils 
 
Three fundamental conservation laws are generally required in order to establish governing 
equation for unsaturated soils; namely, conservation of momentum; conservation of mass; and 
conservation of heat.  A continuum mechanics framework is employed herein, resulting in the 
use of differential calculus to represent these fundamental conservation laws.  The assumption 
that the variables involved are continuous is assumed valid from a macroscopic, 
phenomenological standpoint.   
 
4.1 Conservation of linear and angular momentum 
The distribution of total stresses within an unsaturated soil is governed by the static 
equilibrium of forces.  Stresses acting in each face of a REV can be decomposed as the 
normal and shear components in the x, y, and z-directions, as shown in Fig. 2.  According to 
the convention adopted herein, the stresses shown in Fig. 2 are all positive.  The balance of 
angular momentum, taken with respect to any axis, shows that the Cauchy tensor (Eq. 1) must 
be symmetric (i.e., τij = τji).  The balance of linear momentum (i.e., the equilibrium of forces) 
results in the PDE’s governing static equilibrium of forces (Chou and Pagano, 1992).  The 
equilibrium equations, in Cartesian coordinates, are as follows: 
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where: 

Fi = body force acting on the i direction. 
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Figure  2 Soil representative elemental volume and stresses acting on the REV faces 

(stresses at the negative z-face are not shown for clarity). 
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The same equations above can be obtained by defining an arbitrary finite body and utilizing 
the divergence (or Gauss) theorem.  It is important to point out that pore-water and pore-air 
pressures have no direct role in the equilibrium of forces acting upon the faces of an 
unsaturated soil REV.  However, the partitioning of total forces into total stresses, pore-water, 
and pore-air pressures will depend on the relative compressibility of each soil phase. 
 
4.2 Conservation of mass and heat energy 
Differential equations for the conservation of mass of water, mass of air, and heat can be 
developed by considering a REV of soil (Fig. 3).  The equations of conservation can be 
derived by taking the flow rates in and out of the REV and equating the difference to the rate 
of change of mass or heat stored in the REV with time.  The following differential equations 
are obtained by considering three-dimensional flow conditions: 
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where: 

qi
w, a = total water and air flow rate in the i-direction across a unit area of 

the soil, kg/m2 s; 
qi

w = ρwvi
w, kg/m2 s; 

qi
 a = ρavi

a, kg/m2 s; 
ρw

 = density of water, ≈ 1000.0 kg/m3; 
ρa

 = density of air, kg/m3; 
vi

w, a = water and air flow rate in the i direction across a unit area of the 
soil, m/s; 

V0 = referential volume, V0 = dxdydz, m3; 
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Figure  3 Soil representative elemental volume and fluxes q at the REV faces.  
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Mw, a = mass of water and air within the representative elemental volume, 
kg; 

t = time, s; 
qi

h  heat flow rate in the i direction per unit of total area, J/(m2s); 
Qh  heat within the representative elemental volume, J. 

 
The total water flow rate, vw, also known as specific discharge, is a macroscopic measure of 
flow rate through soils.  A measure of the average actual flow velocity for a saturated soil can 
be obtained by dividing vw by the soil porosity (n = Vv/V).  The total flow rate, vw, may take 
place as liquid water and/or water vapour flow, as will be explained in the next sections.  The 
average actual air flow velocity for a completely dry soil can be obtained by dividing va by the 
porosity.  The total air flow rate, va, may take place as free air and/or air dissolved in liquid 
water, as will be explained in the next sections.  Heat flow may take place by conduction, 
convection, or latent heat consumption.  The mechanisms of air, water, and heat flow within 
unsaturated soils will be described in details later in this paper. 
 
 
5 Strain-displacement relationships and compatibility equations 
 
The classical definition of strain can be applied to an unsaturated soil body.  The normal strain 
in a given direction, ε, is defined as the unit change in length (change in length per unit 
length) of a line which was originally oriented in the given direction.   Shear strain, γ, is 
defined as the change in the right angle between reference axes, measured in radians (Chou 
and Pagano, 1992).  The relationships between the normal and shear strains and the 
displacement in the x-, y-, and z-direction are as follows: 
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where: 

εi
 = normal strain in the i-direction; 

γij = shear strain with respect to the i and j reference axes; 
u, v, w = displacement in the x-, y-, and z-direction, respectively. 

 
The relationships above are obtained by making the assumption of small strains (i.e., 
neglecting the product of two or more derivatives of displacement).  The assumption of small 
strains adopted herein applies to most engineering problems.  Small strain formulations may 
be applied to large strain problems if geometry updating is performed along with an 
incremental analysis (Cook, 1981). 
 
In addition to the strain-displacement relationships, strain compatibility equations can be 
derived (Chou and Pagano, 1992).  The geometric significance of the strain compatibility 
equations rests in the fact that a strain field that does not satisfy the compatibility equations 
may result in “gaps” in the continuum.  Nevertheless, compatibility equations are irrelevant 
because the continuous displacement functions generally used automatically satisfy the 
compatibility equations. 
 
 
6 Constitutive laws for unsaturated soils 
 
The modelling of unsaturated soil behaviour requires constitutive laws for stress-strain 
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behaviour, volume change of the pore-air and pore-water phases, and flow of pore-water, 
pore-air, and heat.  Constitutive laws must be combined with the conservation laws in order to 
render the governing equations determinate.   
 
Constitutive laws are generally established based on the phenomenological observation of the 
relationships between the state variables.  Most constitutive laws for unsaturated soil are 
defined based on nonlinear soil properties (i.e., stress state dependent).  The term unsaturated 
soil property function is used herein to refer to the function describing the relationship 
between a soil property and the stress state variables (σ – ua) and (ua – uw).   
 
6.1 Stress-strain relationship 
Numerous stress-strain relationships have been proposed for unsaturated soils, mostly as 
extensions of existing models for saturated soils.  Figure 4 presents an overview of some 
types of stress-strain relationships available in the literature.  The most popular stress-strain 
models available can be classified as either elastic or elastoplastic models.  Visco-elastoplastic 
and other types of models that have not received much attention in unsaturated soils 
modelling have not been included in Fig. 4.   
 
Regardless of the model adopted, most elastic and elastoplastic stress-strain relationships for 
unsaturated soils can be written in the following generic format: 
 

)()(1
waa uududd −+−= − HδσDε  (8)

)()( waa uuddud −−=− hεDδσ  (9)
 
where: 

d = indicates increment; 
εT = ][ yzxzxyzyx γγγεεε ; 
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Figure  4 Stress-strain constitutive models for saturated and unsaturated soils. 
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The bold characters indicate matrices and vectors.  The superscript (T) designates a transposed 
matrix.  Some matrices were written in the transposed form for convenience. 
 
6.1.1 Elastic models 
Elastic models for unsaturated soils (left branch in Fig. 4) are usually based on extensions of 
Hooke’s law (Fredlund and Morgenstern, 1976), using the two stress state variables, (σ – ua) 
and (ua – uw): 
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where: 

E = Young modulus; 
µ = Poisson’s ratio; 
H = elastic modulus for soil structure with respect to suction change; 
G = shear modulus, )1(2 µ−= EG . 

 
The constitutive matrices D, H, and h corresponding to Eq. (9) can be promptly written.  
Some nonlinear strain characteristics can be accounted for by using incremental analysis and 
the state surface concept (Matyas and Radakrishna, 1968).  Using coefficients of 
compressibility obtained from the volume the void radio state surface, the values of E and H 
can be obtained for each incremental step as follows: 
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σmean = total mean stress, σmean = (σx + σy + σz)/3; 
e0 = initial void ratio; 
e = state surface for void ratio, e = f(σmean – ua, ua – uw). 

 
Equations (11) and (12) are based on the assumption that the volume change of unsaturated 
soils is a function of changes in net mean stress and soil suction.  Equation (11) alone does 
not provide a way of computing µ.  The value of Poisson’s ratio must be estimated or 
obtained from other means.  For instance, µ can be obtained through triaxial or oedometric 
tests with measurement of lateral strains of lateral stresses, respectively.  
 
The stress-induced anisotropy notably found in highly collapsible soils can be considered by 
using a stress-dependent Poisson’s ratio and anisotropy coefficients applied to the Hi modulus 
(Pereira and Fredlund, 2000).  Shear strength can be addressed by using a hyperbolic curve 
(Duncan and Chang, 1970) for the unsaturated soil Young modulus near failure.  Elastic 
models can be considered generally appropriate for the analysis of monotonic net stress and 
suction paths.  However, elastic models may not be accurate when non-monotonic paths take 
place because the distinction between recoverable and irrecoverable strains is not considered.   
 
6.1.2 Elastoplastic models 
Elastoplastic models (right main branch in Fig. 4) may be employed in order to address 
features of soil behaviour such as yield and irrecoverable strains.  Most elastoplastic models 
found in the literature are generally based on the same fundamental principles, but use 
different yield criteria, flow rules, and compressibility functions.  Figure 4 lists several yield 
criteria used by perfect plastic models.  Perfect plastic formulations for saturated soils can be 
extended to unsaturated soils by using the generalised Hooke’s law and by incorporating the 
effect of soil suction into the yield criterion (Pereira, 1996). 
 
Yield surfaces can be combined with hardening rules and cap surfaces.  Hardening rules are 
used in order to reproduce changes in the size of the yield surface (isotropic hardening) or 
shifts in the yield surface position (kinematic hardening).  Cap surfaces are used in order to 
account for yield that occurs at stress states below failure conditions. 
 
Numerous models have been proposed for unsaturated soils based on a critical state 
framework.  Some of the early model were proposed by Karube and Kato (1989), Alonso et 
al. (1990), Wheeler and Sivakumar (1995), and Cui and Delage (1996), among others.  Great 
emphasis has been given to soils compacted at collapsible conditions.  Most models are based 
on isotropic hardening laws and on yield surfaces that expand for increasing soil suctions.  
Collapse is reproduced by using appropriate modes of expansion of the yield curves and 
appropriate variations in soil compressibility for different suctions.  Research continues to be 
undertaken in order to refine elastoplastic models for unsaturated soils. 
 
Lloret and Ledesma (1993) present the manner how the elastoplastic stress-strain relationship 
can be written for unsaturated soils.  The yield functions and corresponding flow rules 
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proposed by Alonso et al. (1990) were considered.  The general stress-strain relationship takes 
the following form: 
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The term Γ is generally taken as equal to the pre-consolidation stress for saturated conditions.  
Different functions for F1, F2, G1, G2 and for the soil compressibility are defined by each 
model found in the literature.  The original references should be consulted for further details.   
 
Equations (8) and (9) can be used to provide generic equations to be used in the derivation of 
the partial differential equations governing unsaturated soil behaviour.  Nevertheless, Eq. (10) 
will be employed herein for the derivation of the governing PDE’s.  The selection of Eq. (10) 
was based on its simplicity and straightforward relation with the soil compressibility 
coefficients. 
 
6.2 Shear strength 
Shear strength characteristics may be incorporated into the PDE’s governing unsaturated soil 
behaviour through modification to the D, H, and h matrices.  For instance, shear strength is 
used by the Hyperbolic-type models to control the shape of the Young modulus function 
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(Duncan and Chang, 1970).  The shear strength equations can also be used to define the yield 
criteria used by elastoplastic models. 
 
Several shear strength equations were listed in Fig. 4, such as the Tresca, Von Mises, and 
Mohr-Coulomb equations.  Extensions of the Mohr-Coulomb criterion for saturated soils are 
widely used to represent the shear strength for an unsaturated soil, τff.  Fredlund et al. (1996) 
proposed the following equation based on the Mohr-Coulomb criterion: 
 

'tan)('tan)(' φΘ−+φ−σ+=τ κ
wafanff uuuc  (14)

 
where: 

τff = shear stress at failure, acting on the failure plane; 
(σn – ua)f = net normal stress acting on the failure plane; 
c’ = cohesion; 
φ’ = friction angle; 

Θ = dimensionless parameter to account for the wetter area of 
contact; 

κ = 
fitting parameter to account for any non-linearity between 
the area and volume representation of the amount of water 
contributing to the shear strength. 

  
The shear strength for an unsaturated soil can be predicted using the soil-water characteristic 
curve and the saturated shear strength parameters, c’ and φ’.  According to Fredlund et al. 
(1996), Θ can be assumed as equal to the degree of saturation, S.  Experimental evidence 
shows that the slope of the plot of shear strength versus soil suction begins to deviate from the 
effective angle of internal friction as the soil desaturates.  This reduced slope is associated 
with the reduction in the wetted area of contact past the air-entry value. 
 
Vanapalli et al. (1996) presents a slightly modified procedure, defining 

( ) ( )resresn SSS −−=Θ=Θ 1  and making κ = 1.  This second procedure, based on 
normalised (or effective) water content, renders the envelope potentially less flexible if the 
fitting parameter κ is not used. 
 
6.3 Water phase volume change 
The constitutive relationship for the amount of water store in the soil pores is usually given in 
terms of volume of water.  Water compressibility is generally neglected.  The change in 
volume of water stored in the soil pores can be written as function of elastic coefficients of 
compressibility, m1

w and m2
w, or volumetric modulus, Ew and Hw, as follows: 
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where: 

wm1
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wm2  = )(1)(1 00 wawa uud
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uud
de

e
S

−+
+

−+
; 

S = degree of saturation, S = f(σmean – ua, ua – uw); 
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e = void ratio, e = f(σmean – ua, ua – uw); 
Ew = wm13 ; 

Hw = wm21 . 
 
Equation (15) is based on the assumption that changes in the volume of pore-water stored in 
the soil are a function of changes in net mean stress and soil suction and are independent of 
changes in shear stresses.  The use of state surfaces for void ratio and degree of saturation 
provides an effective method for computing Ew and Hw.  Hysteretic characteristics of the pore-
water storage can be addressed using more sophisticated relationships.  However, the simple 
elastic relationships based on state surfaces can adequately reproduce monotonic stress paths. 
 
Coupled PDE systems are often written in terms of displacements and pore pressures.  
Changes in (σmean – ua) present in Eq. (15) can be written in terms of changes in (ua – uw) and 
strains using Eq. (10), as follows:  
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where: 
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Equation (16) results in a smooth transition between saturated and unsaturated conditions, 
provided that appropriate constitutive coefficients are employed.  As the soil saturates the 
effects of changes in soil suction and net stresses become equal (i.e., wwss mmmm 2121 === ).  
Consequently, Eq. (16) shows that for saturated conditions water volume changes are equal to 
changes in void ratio. 
 
6.4 Air phase volume change 
The characterisation of the air phase volume change requires the determination of three of the 
following variables; namely, Va, Ma, and ρa.  The air phase is highly compressible, and its 
density is given by the following equation:   
 

a
a

a

a
a u

RT
W

V
M

==ρ  (17)

 
where: 

ρa = density of the bulk air phase, ρa = Wa au /(RT) , kg/m3; 
Wa = molecular weight of pore-air, 28.966 kg/kmol; 

au  = total pressure in the bulk air phase, ua+uatm, kPa; 
ua = pore-air pressure, kPa; 
uatm = atmospheric pressure, 101.325 kPa; 

 
Three volume change measurements can be made for an unsaturated soil; namely, overall, 
pore-water, and pore-air volume change.  The combination of any two of these three volume 
change measurements provides a complete description of volume change within an 
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unsaturated soil.  Pore-air volume changes have proven more difficult to measure than those 
of the pore-water phase.  Therefore, it has become common practice to measure overall and 
pore-water volume changes.  The volume of pore-air may be computed as follows: 
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−−=
 (18)

 
where: 

Hc = Henry’s volumetric coefficient of solubility, Vad/Vw; 
Vad = volume of air dissolved in the pore-water. 

 
Hc is also known as the volumetric coefficient of solubility.  At a constant temperature, the 
volume of dissolved air is a constant for different pressures.  Dorsey (1940) cited by Fredlund 
and Rahadjo (1993) presents values of Hc for various temperatures.  The density is assumed as 
being the same for the free air and for dissolved air. 
 
The volume change constitutive relationship for the water phase can be obtained by taking an 
incremental form of Eq. (18) and using the constitutive relationship for pore-water volume 
change: 
 

)(11
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wa
a

v
aa uudd

V
dV

−β+εβ=  (19)

 
where: 

a
1β  =  )1(1 1 c

w H−β− ; 
a
2β  = )1(2 c

w H−β− . 
 
Equation (19) shows how the volume change characteristics of the air phase can be directly 
obtained from the volume change characteristics of the water phase and soil skeleton. 
 
6.5 Flow laws 
Table 1 presents an overview of flow laws traditionally used for modelling unsaturated soil 
flow behaviour.  The flow laws establish relationships between measures of flow and driving 
potentials.  Driving potentials can be established based on spatial gradients of the energy 
stored per unit volume (Bear, 1972).  The several flow equations have the same format, but 
distinct potentials and properties.  The flow laws presented in Table 1 are well established 
equations that have been experimentally verified. 
 
Pore-air and pore-water have both miscible and immiscible mixture characteristics.  Pore-air 
can flow as free air, as dissolved air diffusing through the liquid water, or as dissolved air 
carried by the liquid water.  Pore-water can flow as liquid water, as water vapour diffusing 
through the free air-phase, or as water vapour carried by moving free air-phase.  Some flow 
mechanisms are essential in the modelling of certain air and water flow conditions.  For 
instance, evaporation cannot be properly reproduced without consideration of the water 
vapour flow (Wilson, 1990).  Similarly, the air flow that takes place through saturated high 
air-entry value ceramics cannot be understood without consideration of the movement of 
dissolved air through the liquid water phase (Fredlund and Rahardjo, 1993). 
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Table 1 – Overview of types of flow within an unsaturated soil and the corresponding 
mechanisms, driving potentials, and flow laws. 
 

Type of flow
(1) 

Flow mechanism 
(2) 

Driving Potential 
(3) 

Flow Law 
(4) 

Liquid water, wlv  Hydraulic head, h (m) Darcy’s law 

Water vapour diffusion, 
vdv  

Mass concentration of vapour per 
unit volume of soil, Cv (kg/m3) 

Modified 
Fick’s law 

Flow of 

water, wv  

Water vapour carried by 

bulk air flow, vav  
Mass concentration of air per unit 

volume of soil, Ca (kg/m3) 
Modified 

Fick’s law 

Interphase 
liquid-

vapour flow 

Thermodynamic 
equilibrium --- (*) Lord Kelvin’s 

equation 

Free air, afv  
Mass concentration of air per unit 

volume of soil, Ca (kg/m3) 
Modified 

Fick’s law 

Dissolved air diffusion, 
adv  

Mass concentration of dissolved air 
per unit volume of soil, Cad (kg/m3) 

Modified 
Fick’s law 

Flow of air, 
av  

Dissolved air carried by 

liquid water flow, aav  
Hydraulic head, h (m) Darcy’s law 

Heat by conduction, cq  Temperature, T (ºC) Fourier’s law 
Flow of 

heat, hq  
Latent heat --- (*) 

Interphase 
liquid-vapour 

flow 

(*) local thermodynamic equilibrium assumed; function of the rate of vapour flow. 

 
 
The following sections present a concise description of the flow laws listed in Table 1.  All 
flow equations presented in this section were written for the y-direction (i.e., the direction 
corresponding to elevation) and considering isotropic conditions.  Similar equations can be 
written for the x- and z-directions by using the appropriate gradient directions.  Anisotropy 
can be easily incorporated into the flow equations by using conductivity ellipsoids.  These 
ellipsoids can be defined by an anisotropy ratio and by the direction of “principal 
conductivities”, as shown by Bear (1972) and Freeze and Cherry (1979). 
 
6.5.1 Flow of liquid water 
The flow rate of liquid water in saturated/unsaturated soils can be described by using a 
generalisation of Darcy’s Law (Bear et al., 1968), where the driving mechanism is the total 
head gradient and the hydraulic conductivity varies with matric suction, (ua – uw).  The 
generalised Darcy’s law can be written as follows: 
 

y
hkv wwl

y ∂
∂

−=  (20)

 
where: 

vy
wl = liquid pore-water flow rate in the y-direction across a unit area 

of the soil due to hydraulic head gradients, m/s; 
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kw = hydraulic conductivity, kw = f(ua – uw), m/s; 
h = hydraulic head, m; 

h = yu

w

w +
γ

 ; 

uw = pore-water pressure, kPa; 
γw

 = unit weight of water, ≈ 9.81 kN/m3; 
y = elevation, m. 

 
The hydraulic conductivity function (i.e., the function giving the value of kw for any value of 
(ua – uw) may be obtained experimentally using laboratory or field tests, or estimated using the 
saturated hydraulic conductivity and the soil-water characteristic curve (Fredlund et al., 
1994).  The use of a continuous kw function provides a smooth transition between the 
saturated and unsaturated condition. 
 
6.5.2 Flow of water vapour 
Water vapour flow through soils takes place by two mechanisms.  Pore-water vapour may 
flow independently from the pore-air phase, driven by gradients in vapour concentration.  
Water vapour flow driven by vapour concentration may take place even if the bulk pore-air is 
at rest.  Pore-water vapour may also be carried by the bulk pore-air phase, which may flow 
driven by gradients in the total pore-air pressure.  The sum of these two vapour flow 
components results in the total water vapour flow, vv. 
 
The flow rate of water vapour due to gradients in vapour concentration may be described by a 
modified form of Fick’s law (Philip and de Vries, 1957 and Dakshanamurthy and Fredlund, 
1981): 
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where: 

vy
vd = pore-water vapour flow rate in the y-direction across a unit area 

of the soil due to vapour concentration gradients, m/s; 
Dv = molecular diffusivity of vapour through soil, m2/s; 
ρw

 = density of water, ≈ 1000.0 kg/m3; 
Cv = concentration of water vapour in terms of the mass of vapour 

per unit volume of soil, Cv = ρv(1 – S)n, kg/m3; 
ρv = density of the water vapour, ρv = Wvpv/(RT), kg/m3; 
Wv = molecular weight of water vapour, 18.016 kg/kmol; 
pv = partial pressure of water vapour, kPa; 
R = universal gas constant, 8.314 J/(mol.K); 
T = temperature, K; 
S = degree of saturation, S = Vw/Vv; 
n = porosity, n = Vv/V0; 
Vw, Vv = volume of water and voids in the elemental volume, 

respectively, m3; 
Dv* = (1 – S)nDvWv  / RT, (kg.m)/(kN.s). 

 
The soil properties Dv and Dv* can be directly measured or reasonably estimated by using the 
value of molecular diffusivity of vapour through air (0.229×10-4(1+T/273.15)1.75 m2/s, 
Kimball et al., 1976) and combining that value with a tortuosity factor.  Ebrahimi-B et al. 
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(2004) presents a summary of tortuosity coefficient functions proposed in the literature and 
shows that most existing functions result in similar values for the ranges of soil suction were 
vapour flow predominates over liquid flow. 
 
The flow rate of water vapour due to bulk pore-air flow may also be described by a modified 
form of Fick’s law (Philip and de Vries, 1957 and Dakshanamurthy and Fredlund, 1981).  
Using the fraction ρv/ρa in order to obtain the fraction of water vapour present in the pore-air, 
the following equation can be written: 
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 (22)

 
where: 

vy
va = pore-water vapour flow rate in the y-direction across a unit area 

of the soil due to bulk air-phase flow, m/s; 
ρa = density of the bulk air phase, ρa = Wa au /(RT) , kg/m3; 
Da = coefficient of transmission of air, m2/s; 
Ca = concentration of air in terms of the mass of vapour per unit 

volume of soil, Ca = ρa(1 – S)n; 
Da* = (1 – S)nDaWa  / RT, (kg.m)/(kN.s). 

 
The soil properties Da and Da* can be directly measured or estimated using the same approach 
that was described above for Dv and Dv*.  The total flow of water vapour is obtained by 
summing vy

vd and vy
va, given by Eqs. (22) and (23).  Taking the sum of the two vapour flow 

components and neglecting gradients of atmospheric pressure, the following equation is 
obtained: 
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6.5.3 Mass transfer between liquid pore-water and pore-water vapour 
Local thermodynamic equilibrium can be assumed between liquid pore-water and pore-water 
vapour at any time and at any point in the soil.  This assumption means that a change in any 
of the state variables; namely, partial vapour pressure, pv, temperature, T, or the total potential 
of the liquid pore-water, ψ, results in an immediate change of the other state variables towards 
equilibrium of the liquid-vapour system.  The assumption of local thermodynamic equilibrium 
provides a way of quantifying mass transfer between liquid and vapour water.  The following 
relationship between pv, ψ, and T can be derived by assuming local thermodynamic 
equilibrium (Edlefsen and Anderson, 1943): 
 

)15.273( +ρ
ψ−

= TR
W

vsatv
w

v

epp  (24)

 
where: 

pvsat = saturation vapour pressure of the soil water at temperature T, kPa; 
ψ = total suction, kPa; 
Wv = molecular weight of water, 18.016 kg/kmol; 
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ρw = water density, ≈ 1000 kg/m3; 
R = universal gas constant, 8.314 J/(mol.K); 
T = temperature, oC. 

 
Values of saturation vapour pressure, pvsat, are well established and depend primarily on the 
vapour temperature (i.e., the vaporization curve).  Equation (24) shows that the partial vapour 
pressure is equal to the saturation vapour pressure when ψ = 0 kPa and zero when ψ ≈ 1×106 
kPa.  Changes in pv due to changes in ψ at any given fixed temperature are negligible when ψ 
< 1500 kPa.  As a result, the use of SWCC’s formed by combining matric and total suction 
values (Fredlund, 2002) does not affect the value of pv computed using Eq. (24). 
 
It will be shown in the next sections that it is convenient to replace the gradients of pv in Eq. 
(23) by gradients of suction, ψ, and temperature, T.  A relationship between the gradients of 
pv and the gradients of the other two variables, ψ and T, can be determined by deriving Eq. 
(24) using the chain rule: 
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Soil-water characteristic curve data is generally plotted combining matric suction values up to 
1500 kPa and total suction values beyond this value.  In order to make Eqs. (24) and (25) 
consistent with the “hybrid” SWCC plot, the water potential, ψ, in Eqs. (24) and (25) can be 
assumed as equal to the soil suction obtained from the SWCC.  Therefore, the term ψ 
corresponds to the total suction when values of ψ are larger than 1500 kPa and to matric 
suction when values of ψ are lower than 1500 kPa.  Assuming that the effect of pore-air 
pressure changes is negligible in the computation of vapour pressures, and replacing the term 
ψ by -uw, Eq. (25) can be re-written as follows: 
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The following equation is obtained by substituting Eq. (26) into Eq. (23): 
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where: 

kvd = pore-water vapour conductivity by vapour diffusion within the air 
phase; 

kvd = 
w

v

w

vv
w

D
TR

pW
ρ+ρ

γ
*

)15.273(
, m/s; 

kva = pore-water vapour conductivity by advection within the free 
pore-air; 

kva = 
w

a

a

v
a

D
ρρ

ρ
γ

*
, m/s; 

γw = unit weight of water, kN/m3; 
γa = unit weight of air, kN/m3. 
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6.5.4 Flow of dry air 
Pore-air flow takes place primarily by two mechanisms.  Pore-air may flow as free air driven 
by gradients in its concentration.  Pore-air may also flow within the liquid pore-water, as 
dissolved pore-air.  Dissolved pore-air may be carried by water flow (i.e., advection) or may 
flow by pore-air diffusion, driven by gradients in dissolved pore-air concentration. 
 
The mass flux of free pore-air may be described by a modified form of Fick’s law: 
 
 

y
uD

y
u

u
CD

y
CDv

a

a

a
a

a

a

a

a

a

a

a
af
y

∂
∂

ρ
−=

∂
∂

∂
∂

ρ
−=

∂
∂

ρ
−=

*
 

 
 (28)

 
where: 

vy
va = pore-air flow rate in the y-direction across a unit area of the soil 

due to pore-air concentration gradients, m/s; 
Da = coefficient of transmission of air, m2/s; 
ρa = density of the bulk air phase, ρa = Wa au /(RT) , kg/m3; 
Ca = concentration of air in terms of the mass of vapour per unit 

volume of soil, Ca = ρa(1 – S)n; 
Da* = (1 – S)nDaWa  / RT, (kg.m)/(kN.s). 

 
All variables and soil properties presented in Eq. (28) have been defined previously.  The soil 
properties Da and Da* can be directly measured or estimated using the same approach that was 
described above for Dv and Dv*, using a tortuosity coefficient. 
 
The flow of dissolved pore-air driven by gradients in dissolved pore-air concentration may be 
described by a modified form of Fick’s law: 
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 (29)

 
where: 

vy
ad = dissolved pore-air flow rate of in the y-direction across a unit 

area of the soil due to pore-air concentration gradients, m/s. 
Dad = molecular diffusivity of dissolved air through water, m2/s; 
Cad = concentration of dissolved air in terms of the mass per unit 

volume of soil, Cad = ρa SnHc; 
Dad* = RTWDnSH a

ad
c , (kg.m)/(kN.s). 

 
The values of Dad* can be directly measured or estimated.  Values of Dad and Hc found in the 
literature are summarised by Fredlund and Rahardjo (1993).  As the soil desaturates, the 
diffusion of dissolved air through the liquid pore-water decreases and becomes insignificant 
when compared with the flow of free pore-air.  The decrease in vad due to desaturation can be 
incorporated into the prediction of Dad* by using a tortuosity coefficient.  
 
The flow of dissolved pore-air carried by water flow (i.e., advection) may be described by 
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Darcy’s law and taking the amount of dissolved air: 
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c
aa
y ∂

∂
−=  (30)

 
where: 

vy
aa = flow rate of dissolved pore-air in the y-direction across a unit 

area of the soil due to bulk pore-liquid water flow, m/s. 
 
The total flow of pore-air is obtained by summing the three flow mechanisms, given by Eqs. 
(28), (29), and (30): 
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where: 

ka = pore-air conductivity; 

ka = 
a

a

a
D
ρ

γ
*

, m/s; 

kad = pore-air conductivity by diffusion within the pore-liquid water; 

kad = 
a

ad

a u
D *

γ , m/s; 

γa = unit weight of air, kN/m3. 
 
Equation (31) provides a smooth transition between unsaturated and saturated conditions.  As 
suction decreases, the soil saturates and ka decreases, eventually reaching zero, for the 
saturated condition.  However, the flow or air does not cease for saturated conditions.  The 
pore-air conductivity by diffusion within the pore-liquid water and the flow of dissolved air 
carried by bulk liquid-water flow increase for increasing saturation. 
 
6.5.5 Flow of heat by conduction 
Heat transfer in soils occurs by three primary mechanisms, namely: conduction; convection; 
and latent heat due to phase change.  Heat transfer by convection of the pore-fluid in soils is 
considerably smaller than conductive heat transfer (Milly, 1984) and is generally neglected.  
Changes of phase can take place as vaporization/condensation.  Freeze and thawing are of 
concern in some unsaturated soil mechanics problems, but are omitted herein.   
 
The conductive heat flow, qi

c, can be written as a function of the thermal conductivity of the 
soil and the temperature gradient, as follows: 
 

y
Tqc

y ∂
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λ−=  (32)

 
where: 

qy
c = heat flow rate in the y-direction across a unit area of the soil 

due to heat conduction, J/s; 
T = temperature, oC; 
λ = thermal conductivity, λ = f(ua − uw), J/(m s oC). 

 
The latent heat flow can be obtained by multiplying the latent heat of vaporization and 
condensation, LV, by the amount of vapour flow, given by Eq. (27).   
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7 Partial differential equations for stress analysis 
  
Partial differential equation for stress-deformation analysis can be written by combining the 
equilibrium equations, Eq. (2) with Hooke’s generalised stress-strain law, Eq. (10). 
Expressing strains in terms of small displacements (u, v, and w for the x-, y-, and z-directions, 
respectively), the following PDE’s are obtained: 
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where: 

D11 = )]21)(1[()1( µ−µ+µ−E ; 

D12 = )]21)(1[( µ−µ+µE ; 

D44 = )]1(2[ µ+E ; 

h = )]21([ µ−HE ; 
γnat = body force acting downward; 
γnat = nSn ws γ+−γ )1( , kN/m3; 
γs = specific weight of soil particles, kN/m3. 

  
Body forces are zero, with exception of the vertical body force, equal to the unit weight of the 
soil, γnat.  Total volume change due to changes in pore-water pressure is neglected in Eqs. # 
and #.  If total volume change due to changes in pore-water pressure is to be determined, the 
relationship between total volume change and pore-water pressure would have to be 
considered and Eqs. # and # should be solved in a coupled manner with Eqs. # and #.  The 
primary variable of interest in the W-GHA model is the change in pore-water pressure and net 
stresses in response to the atmospheric boundary conditions.  Therefore, the equilibrium-
moisture flow coupling was assumed as not essential.  This may not be the case for soils with 
large volume change characteristics, such as expansive and collapsible soils (Pereira, 1996). 
 
 
8 Partial differential equations for water flow 
 
In order to obtain the partial differential equation that governs the conservation and flow of 
liquid and vapour water through soils the flow law equations (Eqs. # and #) and a water 
volume change constitutive equation are combined with the continuity of water mass equation 
(Eq.).  Considering the reference volume V0 constant, the water phase and the soil structure 
incompressible, and assuming that the pore-air pressure is constant, the following equation is 
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obtained: 
  
The PDE governing moisture flow can be modified using Eq. # in order to express gradients 
of pv as function of the gradients of uw and T.  As a result, Eq. # can be re-written as follows: 
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Equation # is the final PDE governing the flow of moisture by liquid water and water vapour 
flow.  Temperature gradients required to render this equation solvable can be obtained by 
solving a PDE governing conservation of thermal energy.  Three unsaturated soil property 
functions can be identified in Eq. #; namely: the hydraulic conductivity, the vapour 
conductivity, and the soil-water characteristic curve.  These soil properties functions vary 
with soil suction, and therefore, the PDE is physically non-linear. 
 
 
9 Partial differential equations for air flow 
 
Present the general equation, and several degrees of simplification, always describing in 
which situations the several PDE forms should be used.  The general equation should be 
transient, and take into account the air dissolved in the water and the compressibility of the 
soil structure.  Describe the boundary and initial conditions applicable to this equation. 
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where: 

n = soil porosity; 
S = degree of saturation, obtained from the soil-water characteristic 

curve. 
 
 
10 Partial differential equations for heat flow 
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In order to obtain the partial differential equation that governs the conservation and flow of 
heat through soils, the equation of conservation of heat (Eq. #) must be combined with the 
heat flow equations (Eqs. # multiplied by Lv, and Eqs. #).  Furthermore, the total amount of 
heat within the REV must be written as a function of the volumetric specific heat of the soil.  
The following results:  
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where: 

Τ = temperature, oC; 
LV = latent heat of vaporization/condensation, 4.187×103×(591 − 

0.51×T), J/kg; 
ζ = volumetric specific heat of soil, ζ = γnat c = f(ua − uw), J/(m3 oC). 

 
Expressing the gradients of partial vapour pressure in Eq. # in terms of gradients of pore-
water pressure and temperature (using Eq. #), the following PDE is obtained: 
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Equation # is the final PDE governing the flow of heat.  Equation # must be solved in a 
coupled manner, along with Eq. #.  The primary variables are uw and T.  These two PDE’s can 
be solved using some numerical approximations, such as the Finite Element and the Finite 
Difference methods.  Two new unsaturated soil property functions can be identified in Eq. #; 
namely: the thermal conductivity function and the volumetric specific heat.  These soil 
properties functions also vary with soil suction, rendering the PDE physically non-linear.  All 
of the above-mentioned unsaturated soil property functions bear a relationship to the SWCC. 
 
 
11 General coupled partial differential equations 
 
This section will present diagrams showing the above PDE’s (in their general forms, without 
simplifications), and showing how they are coupled.  I intend to produce great figures for this 
section that could be used in the book. 
  
Moisture moves through soils driven by gradients of total head and/or partial pressures for 
each of the moisture phases (i.e., both liquid water and water vapour).  The ratio between the 
flow of liquid water and water vapour depends mainly on the temperature and degree of 
saturation of the soil.  Consequently, the transient temperature gradients need to be 
determined and heat transfer must be taken into account when simulating the flow of moisture 
(Philip and de Vries, 1957 and Wilson et al., 1990).  Several physical processes are involved 
in the analysis of moisture and heat flow.  In order to obtain the equations governing heat and 
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moisture transfer, constitutive flow laws and water volume change constitutive laws are 
combined with the mass and heat conservation equations.  Appropriate equations for the soil-
atmosphere flux boundary conditions are required.  The two-dimensional PDE’s used herein 
are extensions of the one-dimensional formulations presented by Philip and de Vries (1957) 
and Wilson et al. (1990). 
  
Coupling terms show indirect processes. Make table. 
 
 
12 Concluding remarks 
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We may have to explain this: 
 It has become conventional practice to plot soil-water characteristic curves using 
matric suction data for (ua – uw) < 1500 kPa and total suction data otherwise.  Fredlund (2002) 
presents a detailed justification for why this apparently inconsistent approach is adequate in 
geotechnical engineering practice.  Capillary effects dominate in the “low” suction range, 
while osmotic potential becomes of importance in the “high” suction range.  Quoting 
Fredlund (2002), “it is anticipated that this [the above manner] will continue to be the manner 
in which the soil-water characteristic curve is plotted and utilized in geotechnical 
engineering”.  The plot of the SWCC combining matric and total suction was adopted 
throughout this paper.  This combined plot provides an effective approach for unifying 
theories developed for the capillary and residual saturation conditions. 
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