Practical Application of 3-D Stability Analysis

Différences typiques entre une surface de glissement 2-D et 3-D

Murray Fredlund & HaiHua Lu
SoilVision Systems Ltd., Canada, murray@soilvision.com

Del Fredlund
Golder Associates, Canada

ABSTRACT: The analysis of slopes by 3-D techniques such as the Limit Equilibrium Method (LEM) has received increased attention in recent years. The increased use has resulted in additional questions surfacing relating to the use of such analysis in consulting practice. Consulting engineers are interested to understand the potential differences between 2-D and 3-D analysis as it relates to the numerical modeling of either back or forward analysis. It is generally understood that i) the resulting factor of safety (FOS) between a 2-D and 3-D analysis i) are different, and ii) that the 3-D FOS will be higher than a 2-D FOS. It is also noted that the 2-D analysis assumes a cylindrical failure surface of infinite length. One of the questions that has surface is “Won’t a 3-D analysis tend to an ever wider and wider 3-D elliptical slip surface as it tries to approach the 2-D result (with its lower FOS)?” This paper and presented analysis will answer this question and will present related analysis which show the trends. The ideal aspect ratio which is calculated as a result of a 3-D analysis will be presented as a result of the sensitivity analysis with typical analysis scenarios. A method of introducing the influence of ground surface topology on 3-D analysis as a second step will also be introduced. Lastly there is a discussion related to the application of 3-D analysis within the existing design limitations.

RÉSUMÉ : L’analyse des pentes par des techniques tridimensionnelles telles que la méthode d’équilibre limite (LEM) a reçu une attention accrue ces dernières années. Cette utilisation accrue a donné lieu à d’autres questions concernant l'utilisation d'une telle analyse dans la pratique de consultation. Les ingénieurs-conseils sont intéressés à comprendre les différences potentielles entre les analyses bidimensionnelle et 3D en ce qui concerne la modélisation numérique de l'analyse en arrière ou en avant. Il est généralement entendu que i) le facteur de sécurité résultant (FOS) entre une analyse 2D et 3D i) sont différents, et ii) que le FOS 3-D sera supérieur à un FOS 2-D. Il est également noté que l'analyse 2-D suppose une surface de rupture cylindrique de longueur infinie. Une des questions qui a la surface est «Une analyse 3-D ne tendra-t-elle pas à une surface de glissement elliptique 3-D plus large et plus large en essayant d'approcher le résultat 2D (avec son FOS inférieur)?» Cet article et l'analyse présentée répondront à cette question et présenteront des analyses connexes qui montrent les tendances. Le rapport d'aspect idéal qui est calculé à la suite d'une analyse 3-D sera présenté à la suite de l'analyse de sensibilité avec des scénarios d'analyse typiques. Une méthode d'introduction de l'influence de la topologie de la surface du sol sur l'analyse 3-D comme deuxième étape sera également introduite. Enfin, une discussion porte sur l'application de l'analyse 3D dans les limites de la conception existante.

KEYWORDS: 3D slope stability, stability analysis, shear strength reduction, 2D stability analysis.

1 INTRODUCTION

The traditional application of the limit equilibrium method (LEM) has been in the context of a 2-D plane strain analysis. Geotechnical engineers have become complacent with the use of 2-D slope stability as it is easy to perform. 2-D analysis suffers from fundamental limitations foremost of which i) the slip shape is assumed to be cylindrical, and ii) the slope geometry is assumed to be unchanged in the 3rd dimension. Such assumptions have proven 2-D analysis to be conservative with respect to the true 3-D factor of safety in the amounts between 10-50% (Domingos, 2016). If unsaturated aspects of slope stability are considered then the difference can be as high as 60% (Zhang, 2015). Therefore significant opportunity exists to optimize existing designs through the application of 3-D slope stability analysis. It should be noted that the difference between a 2-D and a calculated 3-D factor of safety is different in each situation. Therefore it is impossible to assume a specific 2-D/3-D difference for a particular scenario.

The theory for the 3-D LEM has been in existence for decades and is therefore not new. Early theoretical development efforts are available in research literature (Howland, 1977; Hungr, 1987, Hungr et al., 1989, and Fredlund, 1977). The primary limitation of all presented theory is that the slip direction is assumed to happen exactly along the x-coordinate axis. Such a limitation introduces a significant problem for the practical application of 3-D slope stability analysis. This paper presents an extension to the traditional 3-D LEM which allows for the analysis of slips at any direction. Several benchmark examples are presented such that the implementation of the methodology is proven sound. The technique may be applied to Bishops, Morgenstern-Price, GLE, Spencer’s and other analysis methods.

The application of 3-D slope stability LEM in practical geotechnical analysis requires consideration of the effects of i) slip surface shape being elliptical, block-based, or composite, and ii) the effects of ground surface geometry. This paper will focus on the effects of slip surface shape and ground surface shape. A recommended approach for the application of 3-D slope stability analysis in the practice of geotechnical engineering will also be presented.

The application of software tools to analyze slope stability in 3-D has traditionally been highly limited. Recent developments allow for the easy application of 3-D stability analysis in typical problems (Fredlund, 2015; Reyes, 2014). The SVSLOPE
software developed by SoilVision Systems Ltd. is utilized for the analysis presented in this paper.

1.1 Continuity between 2D and 3D LEM

It is of importance to understand the difference between the slip shape analyzed in a 2-D analysis as opposed to a 3-D analysis. In a 2-D analysis the slip shape is ultimately extended infinitely in the 3rd dimension and shear on the end surfaces is not considered. An example 2-D analysis is presented in Figure 1. The equivalent 3-D analysis is shown in Figure 2 where there is no shear strength applied to the vertical end surfaces.

![Example 2-D stability analysis](image1)

Figure 1 Example 2-D stability analysis

![Equivalent 3-D analysis](image2)

Figure 2 Equivalent 3-D analysis (slip surface exploded out of slope)

It should be noted that a simple proof of a 3-D analysis can be done by creating a 3-D model of a 2-D extruded slip surface and applying zero shear strength to the end-walls. This is an easy way to prove the 3-D equivalent scenario of any 2-D analysis. It also highlights the fundamental limitation of a 2-D analysis which i) considers the slip to be of infinite length in the 3rd dimension and ii) does not consider the influence of shear strength on the end surfaces.

2 SLIP SURFACE SHAPE EFFECT

If an engineer wants to strictly determine the difference that slip surface shape makes then it is easiest to extrude a 2-D profile model out to 3-D space to determine the factor of safety of a slip surface assuming an ellipsoidal slip surface. It is recognized that not all 3-D slip surfaces are of a perfect ellipsoidal shape but a majority of slips are an ellipsoidal shape. Therefore it was considered a reasonable starting assumption by the authors.

The benefit of this type of analysis is it allows the engineer to determine the effect on the factor of safety (FOS) of moving from a 2-D plane-strain analysis to a 3-D analysis with an ellipsoidal slip surface. When the slope is extruded to 3-D then an aspect ratio for the ellipsoid must be found through a trial-and-error process. For the present paper a number of example models were selected as benchmark 2-D models and a few are presented in Figure 3 and Figure 4. These models were selected out of list of classic slope stability benchmarks as compiled by SoilVision Systems Ltd.

![Results of extruding the VS_24 model to an equivalent 3-D numerical model](image3)

Figure 3 Results of extruding the VS_24 model to an equivalent 3-D numerical model

A common question related to 3-D analysis is: “Won’t a 3-D analysis of an extruded profile tend to an ever wider and wider 3-D elliptical slip surface as it tries to approach the 2-D result (with its lower FOS)?”. One of the key aspects to answering this question is related to the assumption of the slip surface shape. If the shape is cylindrical with small beveled or rounded ends then as the cylinder becomes longer and longer the effects of the shear on the ends theoretically becomes a smaller and smaller percentage contribution. It should be noted, however that the “extended cylinder” described in the above argument is not a common slip surface failure shape in the field. If we assume an elliptical slip surface failure then the results illustrate that the failure does not tend to be infinitely wide as previously assumed.

![Results of extruding three such 2-D models to 3-D](image4)

Figure 4 Results of extruding three such 2-D models to 3-D

Figure 5 shows the results of extruding the VS_24 model to an equivalent 3-D numerical model. It can be seen from this extruded model that a wide range of aspect ratios for the ellipsoid have been tried (the trial slip surfaces have been plotted) and the ellipsoid with the minimum FOS corresponds to an aspect ratio of 16.8 with a minimum FOS of 1.72 which is a 19.6% increase over the 2-D FOS of 1.438. The results of extruding three such 2-D models to 3-D are shown in Table 1. It can also be seen from these results that the difference for simple and low-angle slopes between the 2-D and 3-D FOS ranges between 4.3% to 20%.

<table>
<thead>
<tr>
<th>Model</th>
<th>FOS</th>
<th>Max Depth (m)</th>
<th>Aspect</th>
<th>Max Depth (m)</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS_1</td>
<td>1.031</td>
<td>4.8</td>
<td>4.3</td>
<td>4.01</td>
<td>4.35</td>
</tr>
<tr>
<td>VS_3</td>
<td>1.45</td>
<td>4.76</td>
<td>4.4</td>
<td>4.56</td>
<td>5.45</td>
</tr>
<tr>
<td>VS_24</td>
<td>1.72</td>
<td>6.88</td>
<td>16.8</td>
<td>6.814</td>
<td>19.61</td>
</tr>
</tbody>
</table>

Table 1 Results of 2-D profiles extruded to 3-D
The second primary reason why 3-D analysis differs from 2-D analysis is that there may be variation of the surface topology. Such variation can produce differences in the computed FOS. Such variations can largely be grouped into surface shapes which are convex or concave. While it is recognized that typical topography may be highly variable, the general trends can be easily quantified with simple concave and convex shapes. Such an analysis has been performed (Zhang, 2015; Domingos, 2014) and the geometry for the comparison can be seen in Figure 6.

Figure 3 VS_1 2-D profile model

Figure 4 VS_24 2-D profile model

Figure 5 VS_24 Extruded 3-D model with critical slip surface

3 GROUND SURFACE TOPOGRAPHY VARIATIONS

The second primary reason why 3-D analysis differs from 2-D analysis is that there may be variation of the surface topology. Such variation can produce differences in the computed FOS. Such variations can largely be grouped into surface shapes which are convex or concave. While it is recognized that typical topography may be highly variable, the general trends can be easily quantified with simple concave and convex shapes. Such an analysis has been performed (Zhang, 2015; Domingos, 2014) and the geometry for the comparison can be seen in Figure 6.

From analyzing the geometry it can be seen that i) the consideration of such geometries results in an increase in the computed FOS over a 2-D scenario and ii) the consideration of unsaturated shear strengths further increases the computed FOS in 3-D. Thus it can also be surmised that the consideration of 3-D geometries in a 3-D numerical model can often result in computed FOS values which are higher than 2-D analysis and have the potential to save on construction costs in the design of slopes.

Figure 6 Convex and concave geometries used in 3-D simulations

Figure 7 Differences between 2-D and 3-D computed FOS for convex and concave saturated/unsaturated slopes (Zhang, 2014)

The results of the influence of surface topology suggest that the consideration of such influence may not be trivial. The consideration of 3-D effects of topology may therefore be useful in the practical application of 3-D slope stability.

4 PRACTICAL APPLICATIONS GUIDELINES

The current state of practice in geotechnical engineering has a long history of application and design of earth structures. It must be recognized that the existing limits of design of 1.3 and 1.5 have been developed in the context of an application of a 2-D limit equilibrium numerical model. Common questions related to the application of a 3-D numerical analysis to slope design are “Can I use a 3-D analysis and design for my same limits of 1.3 and 1.5?”, or “Should we move to only use a 3-D analysis?”. There is recognition that significant further work is required to completely understand a 3-D analysis but a number of principles can be developed which form a foundation for a path forward in terms of a practical application of a 3-D numerical model in geotechnical engineering practice.

Firstly, it is recommended that geotechnical engineers begin to run both 2-D and 3-D numerical models to determine the potential differences between such analysis. There is not a single
percentage that represents a consistent difference between a 2-D and a 3-D analysis and therefore the geotechnical engineer must begin to become familiar with the results of the analysis in each engineering situation.

It is important to understand the logic followed by existing analysis performed over the past few decades. The process may be illustrated in Figure 8. From this figure we may note that i) the definition of failure at a FOS=1.0 does not change between 2-D and 3-D analysis, ii) A 3-D FOS will typically be higher than a 2-D FOS, and iii) when a 3-D analysis is performed we are moving closer to field conditions and therefore moving closer to the real-world FOS.

It should also be understood that the true FOS is really comprised of a KNOWN and an UNKNOWN FOS. When a 2-D analysis yields a value of 1.3, the known FOS\(_{2D}\) is 1.3 or 30%. The unknown FOS\(_{2D:3D}\) is the difference between the 3-D and the 2-D FOS. The geotechnical engineer traditionally has not known what the second FOS\(_{2D:3D}\) is but they have a certain degree of comfort knowing it exists. However the second unknown FOS\(_{2D:3D}\) can be a difference between 10-60%. On both ends of this range there requires further consideration. If the FOS\(_{3D}\) is 10% over the FOS\(_{2D}\) then it must be realized that there is little “cushion” over the known FOS\(_{2D}\). If the FOS\(_{2D:3D}\) is closer to 60% or higher then there is significant overdesign that may be costly.

So when a 3-D slope stability analysis is performed the engineer is merely determining what the unknown FOS\(_{2D:3D}\) is that has existed all along but has remained unknown. This additional piece of information gives the geotechnical engineer another crucial piece of information required for slope stability analysis. It is important to understand the logic followed by existing analysis performed over the past few decades. The process may be illustrated in Figure 8. From this figure we may note that i) the definition of failure at a FOS=1.0 does not change between 2-D and 3-D analysis, ii) A 3-D FOS will typically be higher than a 2-D FOS, and iii) when a 3-D analysis is performed we are moving closer to field conditions and therefore moving closer to the real-world FOS.

As 3-D analysis techniques become more common and easily applied the geotechnical engineer must understand the differences between a 2-D and a 3-D analysis. The primary differences in the 3-D slope stability analysis lie in the fact that i) the slip shape is more realistic, and ii) the topology may be varying in the 3rd dimension.

This paper has illustrated how it is easy to extrude a numerical model and determine the influence of the improved slip shape easily. It can also be seen that it is straightforward to incur FOS\(_{3D}\) which are 4-20% higher than their 2-D plane strain equivalent models in this process. Such an analysis can identify the specific influence of the slip surface shape on the FOS calculations.

The influence of surface geometry on the calculated FOS can also be illustrated through the representation of typical concave or convex geometries. Such an analysis was performed by Zhang (2014) and illustrated differences between 2-D and 3-D FOS values of between 8-60%. A higher difference was incurred if unsaturated soil mechanics were considered.

This paper presents a step-wise methodology for the application of 3-D slope stability analysis in the practice of geotechnical engineering. The paper also presents some foundational principles for the understanding of how a 3-D analysis fits in the existing design limits of 1.3 and 1.5.

6 REFERENCES

