Success Stories

June 16, 2009

The unique ability of SVSlope to search for the most critical slip surface has application in the area of balefill slope stability analysis. In a balefill, the incoming waste stream is compacted into rectangular bales prior to landfilling. Balefills are operated separately from landfills, where the incoming waste is usually condensed in-situ by compactors. The study outlined in this article required the slope stability analysis of a proposed vertical extension to a balefill. Why use dynamic programming? Conventional geotechnical analysis methods are generally limited to well-defined failure modes, which may not occur in landfills due to the presence of unknown but preferential slip surfaces. Conventional models assume a stress distribution to solve an indeterminate problem. The application of dynamic programming with a stress-based analysis allowed the consultant to avoid drawbacks associated with conventional methods of slices.

The analyzed design may be seen above. Stability analyses of landfills are complex, as the stress-strain relationship of municipal solid waste has not been resolved due to uncertainties, scalability of lab results, and multiple failure mechanisms working in parallel.

In this particular analysis, the landfill was composed of a series of bales which made the analysis process somewhat complex. Due to the construction of the landfill, interfaces between materials were anticipated to represent preferential locations for slip surfaces.

Advanced landfilling techniques, such as baling, introduce additional complexities at bale interfaces and lifts. Moreover, conventional, well-defined failure surfaces may not develop within the waste mass due to the presence of preferential failure surfaces, defined by liner systems, lifts, and abandoned work faces. Therefore, it is essential to demonstrate the impact of waste strength parameters on the slope stability of balefills, taking into account concurrently the potentially irregular geometry of the failure surface as it will be further analyzed in the sequence.

Specifically, the analysis was performed in a two stage process: (i) calculation of stress distribution, and (ii) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by Dynamic Programming optimization method. To further reduce uncertainties, a sensitivity analysis was performed, evaluating the effect of different waste strength ratios between the existing and piggy-backed, vertical expansion of the landfill.

Dynamic programming was selected for this analysis because of its ability to determine the most reasonable slip surface in an unrestrained way. Given the complex geometry of the situation the location of a potential slip surface was unknown.

In the analysis at hand, the resulting slip surfaces were categorized into four groups based on the location and shape of the slip surfaces. Some of the resulting slip shapes may be seen in the figures below. The critical slip surfaces were generally found to run parallel to the interfaces between waste bodies, thus resulting in a translational slip. The critical slip shape more closely resembles that of a non-circular failure.


If you are interested in this type of analysis the Dynamic Programming method is implemented in our SVSlope software package. Please visit our ordering page for pricing and purchase information, or contact us directly.


  • Kremen, A. and Tsompanakis, Y, 2009, APPLICATION OF DYNAMIC PROGRAMMING TO EVALUATE THE SLOPE STABILITY OF A VERTICAL EXTENSION TO A BALEFILL, accepted for publication in Waste Management & Research ( PDF)


  • "I would like to thank you for all the support and the interest that I got from your team regarding this matter. I was able to successfully finish my project with the help of your technical support and managed to graduate achieving a high grade on the project I did. The software is extremely helpful and wasn't complicated and I look forward to future for more work and experience with your software. Thank you for your help and support."
  • "I have been using SoilVision's SVOFFICE™ software for research and training purposes for a number of years now. Myself and my colleagues have developed a number of training modules in this software, and have been using these to teach limit equilibrium and flow modeling to undergraduate students in the civil, environmental and mining engineering streams.

    In my opinion, this software is easy to learn and fun to use. The built-in tutorials are sufficient to get one started. With these tutorials, my students were generally able to complete their analyses with minimal involvement on my side.

    Based on my own experience, it takes around a month of full-time use to become reasonably competent with the software (provided that one understands the theoretical underpinnings of this type of analysis) - a short learning curve, compared to other products of similar complexity. The interface is intuitive enough for me to figure out things on my own, and I rarely had the need to ask for help.

    I don't generally like praising anything excessively, and I don't post particularly glowing reviews for anything. Having said that, I must mention the SoilVision support. At some point during my research, I was conducting a number of replication studies for my thesis. In that period, I must have emailed SoilVision's support anywhere from 2 to 5 times a day, with fairly complex (and sometimes very dumb) questions. I always got a response by the end of the day, and a resolution within a couple days at most. In a number of urgent cases (such as during a tutorial session with a classroom of students) I called them directly on the phone and, with senior product engineers involved, had the issue addressed in minutes."
  • "We have allowed our students the choice of using multiple Geotechnical software suites in our Dam Design and other Geotechnical courses. Our students consistently gravitate towards SoilVision software as being the most modern and user-friendly."

  • "I've been a geotechnical engineer for more than 25 years and SoilVision has the best tech support I have ever worked with. I truly appreciate their patience and help over the past year."

  • "Peter Brett Associates have been looking to update our existing slope stability software over the last year. After extensive research and trials, SVSLOPE® developed by SoilVision Systems Ltd. was found to meet all our existing and future design requirements. Its ease of use for modeling simple as well as complex geological and geometrical problems was a critical factor in our assessment as well as the incorporation of design to the Eurocodes. Their customer support has been faultless and their willingness to develop the software to meet our own specific design requirements is a most gratifying added bonus."

    "We love the fact that SVSLOPE® is part of an integrated suite of software and that, if required, 3D analysis can be undertaken. We would recommend this product to other geotechnical consulting firms."

  • "We have been using SVSLOPE® and SVFLUX™ for the past year and have found them to be efficient and productive engineering tools which have allowed us to offer our services in an efficient manner. The capability of automated increased discretization of the mesh is an absolute benefit to our modeling, reducing time and effort. We have found the software quick and easy for our engineers to train and utilize. I would recommend this product to other geotechnical consulting firms."

  • "The software is well documented and comes with number of useful example models. We were able to quickly begin creating models after a short review of the user interface and going through the available on-line webinars. The software offers solid benefits of less conservatism and the ability to model real geometry."

  • "This new software for stability analysis includes a number of state-of-the-art options for probabilistic slope stability analysis. This feature, combined with comprehensive deterministic analyses, will provide new opportunities to build confidence in the results of a site-specific analysis.”

  • "I'm excited to see the release of this new and innovative product. I look forward to and encourage the application of this software on additional geotechnical projects.”

  • "In consulting engineering practice, I am increasingly made aware of the important and beneficial role that modeling the unsaturated soil zone can play in providing the client with the best possible engineered solution. The SoilVision software has made it possible to readily estimate and incorporate unsaturated soil properties into the modeling of saturated / unsaturated soil systems.”

  • "The use of SVSLOPE® software as part of a research project on clay slopes under seismic conditions with the Université de Sherbrooke has been incredibly easy and effective. The continuation of this research with SoilVision is promising, with technical support, which was present at the right time, as well as a passionate geotechnical team supporting the project.”

Our industry defining software will change the game for your firm